Skip to content

Commit

Permalink
fix typos
Browse files Browse the repository at this point in the history
  • Loading branch information
rzy0901 committed Oct 10, 2023
1 parent 9b26bee commit b0b67fc
Show file tree
Hide file tree
Showing 2 changed files with 7 additions and 7 deletions.
14 changes: 7 additions & 7 deletions content/post/channel.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,19 +41,19 @@ typora-root-url: ../../static
We have CIR in below form:
$$
h(\tau)=\sum_{i=0}^{N-1}\alpha_0\delta(\tau-\tau_i)\rightarrow \mathbf{h}=[\alpha_0,\ldots,\alpha_{N-1}].
h(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\delta(\tau-\tau_n(t))\rightarrow \mathbf{h}=[\alpha_0(t),\ldots,\alpha_{N-1}(t)].
$$

Do DFT at $k$:
$$
H(k)=\sum_{n=0}^{N-1}\alpha_n\exp(-\frac{\mathrm{j2\pi kn}}{N}).
H(t,k)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\frac{\mathrm{j2\pi kn}}{N}).
$$

Substitute $k$ with $f$ at the left of the equation, and substitute $k$ with $f/\Delta f$ at the right side of the equation, we have:
$$
\begin{aligned}
H(f)&=\sum_{n=0}^{N-1}\alpha_n\exp(-\frac{\mathrm{j2\pi f/\Delta f n}}{N}), \\
&\xlongequal[]{\Delta f =1/(N\Delta t)}\sum_{n=0}^{N-1}\alpha_n\exp(-\mathrm{j2\pi f\tau_n}).
H(t,f)&=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\frac{\mathrm{j2\pi f/\Delta f n}}{N}), \\
&\xlongequal[]{\Delta f =1/(N\Delta t)}\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j2\pi f\tau_n(t)}).
\end{aligned}
$$

Expand Down Expand Up @@ -96,18 +96,18 @@ typora-root-url: ../../static

+ Real bandpass channel:
$$
h(t,\tau)=\sum_{n=0}^{N-1}\alpha_{n}(t)\delta(\tau-\tau_n(t)),
h(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_{n}(t)\delta(\tau-\tau_n(t)),
$$
where:

+ $t$ and $\tau$: time domain and delay domain.

+ $N$: number of multipaths.
+ $N(t)$: number of multipaths at time slot $t$.
+ $\alpha_n(t)$ and $\tau_n(t)$: path loss (amplitude) and delay for $n$-th path at time slot $t$.

+ Equivalent complex baseband (lowpass) channel:
$$
h(t,\tau)=\sum_{n=0}^{N-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))\delta(\tau-\tau_n(t)),
h(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))\delta(\tau-\tau_n(t)),
$$

where $\phi_n(t)=2\pi f_\text{c} \tau_n(t)+\phi_{\text{D}_n}(t)$ denotes the phase of $n$-th path at time slot $t$, with $\phi_{\text{D}_n}(t)$ denotes the Doppler phase shif t.
Expand Down
Binary file modified static/channel.assets/channel.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit b0b67fc

Please sign in to comment.