-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
59 lines (44 loc) · 2.58 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import random
import pandas as pd
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, data_file, seq_len, tokenizer):
self.seq_len = seq_len
self.tokenizer = tokenizer
# Use tokenized data from tokenizer if available
try:
self.data = self.tokenizer.tokens_to_indices(self.tokenizer.tokenized_data)
except:
# Generate tokens indices of the data
with open(data_file, encoding='utf-8') as f:
data = f.read()
print("Tokenizing data file...")
self.data = self.tokenizer.encode(data, tqdm=True)
self.total_tokens = len(self.data)
self.epoch_len = self.total_tokens // self.seq_len # Epoch length = total tokens // training sequence length
print(f"{self.total_tokens} tokens created from the file. Each epoch will have {self.epoch_len} batches.")
self.end_sample_idx = self.total_tokens-self.seq_len-1 # last possible index that can be sampled (-1 to ensure target is also present)
def __len__(self):
return self.epoch_len
def __getitem__(self, idx):
start_idx = random.randint(0, self.end_sample_idx) # Select a random starting point between the start and the last possible token (due to the token length)
idx = self.data[start_idx:start_idx+self.seq_len+1] # Sample data with 1 extra token which will become target y for last input token
x, y = idx[:-1], idx[1:] # Shift x and y to form input and target
return torch.LongTensor(x), torch.LongTensor(y)
def collate_fn(data):
"""
function to format the data to form a batch with x and y
Input:
data: torch tensors with x and y as list of tuples
Returns:
Tensors: x and y
"""
x, y = zip(*data)
x = torch.stack(x)
y = torch.stack(y)
return x, y
def get_dataloader(data_file, batch_size, seq_len, n_workers, tokenizer):
dataset = CustomDataset(data_file, seq_len, tokenizer) # Create Dataset from the file using tokenizer
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=n_workers, collate_fn=collate_fn) # Create Dataloader for the dataset
return dataloader