-
Notifications
You must be signed in to change notification settings - Fork 1
/
Basic Combinatorics - Spring, Home Assignment 3.tex
138 lines (135 loc) · 6.58 KB
/
Basic Combinatorics - Spring, Home Assignment 3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
\documentclass[12pt]{article}
\usepackage{lingmacros}
\usepackage{tree-dvips}
\usepackage[english]{babel}
\usepackage{amsthm}
\usepackage{hyperref}
\usepackage{amsmath}
\newtheorem*{claim*}{claim}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{claim}[theorem]{claim}
\newtheorem*{theorem*}{Theorem}
\newcommand{\ndiv}{\hspace{-4pt}\not|\hspace{2pt}}
\usepackage{amssymb}
\newtheorem{prop}{Proposition}
\begin{document}
\begin{center}
\section*{Basic Combinatorics - Spring, Home Assignment 3}
\subsubsection*{Saar Barak}
\end{center}
\subsection*{Problem 1.}
\begin{claim*}
There is an integer $n_0$ such that for any $n\ge n_0$, in every $9$-coloring of the integers $\{1,2,3,\dots,n\}$, one of the $9$ color classes contains $4$ integers $a,b,c,d$ such that $a+b+c=d$.
\end{claim*}
\begin{proof}
based on Ramsay Theorem Let $n_0=K(4,\dots,4)$, where 4 appears $k-1$ times.
and lets $c$ be $r$-colouring s.t:\[c:\{1,\dots,n\}\to\{1,\dots, k\}\]
For graph $K_n$ and labelling of its edge $\{1,\dots,n\}$.
we can colour any edge $e_{ij}$ with $c(|i-j|)$. we got a $k-1$-colouring of $K_n$. then for $n_0$, we must have a $K_4$ with all edges different.
for vertices $x\le y\le z \le w$ then \[a=y-x,b=z-y,c=w-z,d=w-x\] Gives a solution
\end{proof}
\subsection*{Problem 2.}
\begin{claim*}
every tournament on n vertices, contains a transitive tournament on
$\lfloor \log_2 n \rfloor$ vertices.
\end{claim*}
\begin{proof}Using induction for $n=0,1,2$ its holds on empty.
W.L.O.G\footnote{we can modify any other tournament to to nearst power of 2 its will still hold for $\lfloor \log_2 n+1 \rfloor$ see (10) } assume the claim holds for $n\leq 2^k$ now lets look at some tournament on $2^{k+1}$ vertices and we can pick any vertex $v$, and define:
\[v_{in}=\{u : \text{ exsit edege } v\leftarrow u\}
,v_{out}=\{u : \text{ exsit edege } v\rightarrow u\}
\]
Hence $|v_{in}|+|v_{out}|=2^{k+1}-1$ and one of them contain $|2^k|$ edges, lets assume its $v_{in}$\footnote{ its equivalence for $v_{out}$} by our assumption its contains transitive tournament $T_{in}$ size $|k|$.
now $T_{in}\cup \{v\}$ is sub tournament and any edge points to $v$ hence its transitive tournament on $|k+1|$ vertices.\end{proof}
\begin{claim*}
there exists a tournament on n vertices that does not contain a
transitive tournament on $2 \log_2 n + 2 $ vertices.
\end{claim*}
\begin{proof}
The number of Tournament on $n$ vertices is $2^{\binom{n}{2}}$.The number of tournaments of size $k$ is $k!$, and there are $\binom{n}{k}$ sets of size k, and the number of ways to choose the edges outside the transitive tournament is ${2^{\binom n2 - \binom k2}}$. hence if we show that
\[k! \binom nk 2^{\binom n2 - \binom k2} < 2^{\binom n2}
\]
its yield that for some $k$ the number of n-vertex tournaments with a transitive subtournament on $k$ vertices is smaller than the total number of tournaments.
\item \begin{eqnarray}
2^{\binom n2} &>& k! \binom nk 2^{\binom n2 - \binom k2} \\
2^{\binom k2}&>& k! \binom nk \\
&>& k!\frac{n!}{k!(n-k)!} \\
&>& n(n-1)(n-2) \dotsm (n-k+1)\\
&>& n^k
\end{eqnarray}
Taking $\log_2$ from (1)(5)
\item \begin{eqnarray}
{\binom k2} &>& k\log_2(n) \\
\frac{k!}{2(k-2)!}&>& k\log_2(n) \\
\frac{k!}{k(k-2)!}&>& 2\log_2(n)\\
k-1&>& 2\log_2(n)\\
k&>& 2\log_2(n)+1
\end{eqnarray}
\end{proof}
\subsection*{Problem 3.}
\begin{claim*}
if an n-vertex graph $G = (V, E)$ has no copy of $K_{2,t}$\footnote{I will use $t+1$ for the proof i.e $K_{2,t+1}$ } then
\[|E|\le {1\over 2}(\sqrt{t-1}n^{3\over 2}+n)
\]
\end{claim*}
\begin{proof}
W.L.O.G let $t\ge 1$. we can distinguish that any $e_1,e _2\in E$ have at most$^3$ $t$ neighbours. and each one of them can be part of pair.
we can consider it as the number of path length 2 in $G$.
Let $d(v_i)$ be the deg of $v_i\in G$ and we get that:
\item \begin{eqnarray}
t\binom n2\geq \sum_{v\in V} \binom{d(v)}{2}\geq n\binom {2|E|/n}{2}
\end{eqnarray}
The right-hand side hold from Jensen’s Inequality and since its minimized\footnote{convex property } the binomial when all the
degrees are equal, $d_i = 2|E|/|V|.$
\item \begin{eqnarray}
n\binom {2|E|/n}{2}= n\frac{(2|E|/n)(2|E|/n-1)}{2}\ge n\frac{(2|E|/n-1)^2}{2}
\end{eqnarray}
And
\item \begin{eqnarray} t\binom n2 = t\frac{n^2-n}{2}\le t\frac{n^2}{2}
\end{eqnarray}.We conclude from (11)(12)(13) that
\item \begin{eqnarray}
n\frac{(2|E|/n-1)^2}{2} &\leq & t\frac{n^2}{2} \\
{(2|E|/n-1)^2}&\leq & tn \\
2|E|/n&\leq & \sqrt{tn}+1 \\
|E|&\leq^{3} & {1\over 2}(\sqrt{t}n^{3\over 2}+n)
\end{eqnarray}
\end{proof}
\subsection*{Problem 4.}
\begin{claim*}
Let $S_1, \dots , S_n \in [n]$ such that $|S_i \cap S_j | \le 1$ for all $1 \le i < j \le n$ then.
\[\frac{1}{n}\sum^n_{i=1}|S_i|=O(\sqrt{n})
\]
\end{claim*}
\begin{proof} Let define $G=(V,E)$ such that \[S=\{S_i:S_i\in [n]\},U=\{i\in n\}\text{ and } E=\{e_{S_k,m}:m\in S_k \}, V =S\cup U \]
Its immediate $|V|=2n$ and $G$ is Bipartite since we can dived $V$ into 2 disjoint independent sets $S$ and $U$, that is any $e\in E$ connects a vertex in $S$ to one in $U$. hence $G$ has no copy of $K_{2,2}$, using \textbf{Problem 3} we can get that
\item \begin{eqnarray}
|E|&\le& {1\over 2}(\sqrt{2-1}(2n)^{3\over 2}+2n)\\
\sum^n_{i=1}|S_i|&\le& \sqrt{2}n^{3\over 2}+n\\
{1\over n} \sum^n_{i=1}|S_i|&\le& \sqrt{2}\sqrt{n}+2\\
\frac{1}{n}\sum^n_{i=1}|S_i|&=&O(\sqrt{n})
\end{eqnarray}
\end{proof}
\pagebreak
\subsection*{Problem 5.}
\begin{theorem*}
if $G = (V, E)$ has no copy of $K_{t+1}$ then $|E|\leq (1-\frac{1}{t})\frac{n^2}{2}.$\\(Turan’s Theorem)
\end{theorem*}
\begin{proof}
Let $x = (x_1, . . . , x_n) \in \mathbb{R}^n$ and $f$ to be vector and weight function satisfying \[
\forall i\text{ } 0 <x_i\leq 1,\sum^n_{i=1} x_i = 1,f(x)=\sum_{i,j\in E} x_ix_j \]
By taking $x = (\frac{1}{n},\dots , \frac{1}{n})$ we get \item \begin{eqnarray}
f(x)\geq \sum_{i,j\in E}\frac{1}{n^2}\geq \frac{|E|}{n^2}\end{eqnarray}
The “weight shifting” method yield to shift the weight between any neighbours $x_i,x_j$ if $e_{i,j} \notin E$. \\We can notice that the sum is maximized when all the
weight is concentrated on a clique. Since any shift is does not decrease the value of $f$ we can repeat the processes. since $G = (V, E)$ has no copy of $K_{t+1}$ we can have at most $t$ size clique ,let name it $[T]$. we can get lower bound on $f$ :
\item \begin{eqnarray}
f(x)&\leq & \sum_{i,j\in [T]}x_ix_j=\sum_{i,j\in [T]}\frac{1}{t^2} \\
&\leq & \frac{t(t-1)}{2}\frac{1}{t^2}\\
&\leq & (1-\frac{1}{t})\frac{1}{2}
\end{eqnarray}
Combining (25) and (22) to finish the proof
\item \begin{eqnarray}
\frac{|E|}{n^2}&\leq & (1-\frac{1}{t})\frac{1}{2}\\
|E|&\leq & (1-\frac{1}{t})\frac{n^2}{2}
\end{eqnarray}
\end{proof}
\end{document}