-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathflaskServer.py
43 lines (38 loc) · 1.12 KB
/
flaskServer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import flask
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
import pandas as pd
import json
from flask import request
from pymongo import MongoClient
# initialising flask app
app = flask.Flask(__name__)
# linking MongoDB database
conn = MongoClient()
db = conn.showmedawae # db name
collection = db.realtime # collection name
# route to interact with the app
@app.route("/", methods=["GET","POST"])
def homepage():
# loading the model
model = load_model("final-model-hopefully.h5")
# waiting for json request
if request.is_json:
req = flask.request.get_json()
df = pd.DataFrame.from_dict(req)
# prediction
prediction = model.predict(df)
p = pd.DataFrame(prediction)
pred = p.to_json()
print(pred)
# inserting to the database
collection.insert_one(pred)
return pred
else:
return "Request was not JSON", 400
if __name__ == "__main__":
print(("* Loading Keras model and Flask starting server..."
"please wait until server has fully started"))
app.run()