This repository contains code for training and evaluating a Lunar Lander agent using the Proximal Policy Optimization (PPO) algorithm.
- Directory Structure
- Files and Functions
- Model Performance
- Installation Guide
- Further Improvements
- Acknowledgments
- License
├── src
│ ├── utils.py
│ ├── lunar_lander_training.py
│ └── lunar_lander_evaluation.py
├── notebooks
│ ├── lunar_lander_training.ipynb
│ └── lunar_lander_evaluation.ipynb
├── environment.yml
└── README.md
utils.py
: Utility functions for various tasks.lunar_lander_training.py
: Functions for training the lunar lander.lunar_lander_evaluation.py
: Functions for evaluating the lunar lander.lunar_lander_training.ipynb
: Notebook for lunar lander training.lunar_lander_evaluation.ipynb
: Notebook for lunar lander evaluation.
This section will be added
To set up the project environment, use the environment.yml
file to create a conda environment.
-
Clone the repository:
git clone https://github.com/sadegh15khedry/Lunar-Lander-Using-PPO.git cd Lunar-Lander-Using-PPO
-
Create the conda environment:
conda env create -f environment.yml
-
Activate the conda environment:
conda activate lunar-lander
-
Verify the installation:
python --version
- Tune hyperparameters for better performance.
- Experiment with different algorithms available in Stable Baselines3.
- Implement additional evaluation metrics and visualizations.
This project is based on the tutorial by Nicholas Renotte on training a Lunar Lander agent. You can find the tutorial here https://www.youtube.com/watch?v=nRHjymV2PX8&t=551s .
This project is licensed under the Apache-2.0 License - see the LICENSE.md file for details.