Cells regulate their functions through gene expression, driven by a complex interplay of transcription factors and other regulatory mechanisms that together can be modeled as gene regulatory networks (GRNs).
The emergence of single-cell multi-omics technologies has driven the development of several methods that integrate transcriptomics and chromatin accessibility data to infer GRNs.
Gene Regulatory nETwork Analysis (GRETA) is a Snakemake
pipeline that implements state-of-the-art multimodal GRN inference methods. It organizes the steps of these methods into a modular framework, enabling users to infer, compare, and benchmark GRN approaches.
Clone repo:
git clone git@github.com:saezlab/greta.git
cd greta
Then create a new enviroment specific for Snakemake
:
mamba create -c conda-forge -c bioconda -n snakemake snakemake
mamba activate snakemake
Due to the magnitude of datasets and analyses, the repository is organized as a reproducible Snakemake pipeline and uses singularity images to handle dependencies:
greta/
├── config/
│ ├── slurm/ # Cluster configuration (assumes Slurm architecture)
│ ├── config.yaml # Specifies methods, datasets, and databases
│ └── prior_cats.json # Specifies database labels for each dataset
└── workflow/
├── envs/ # Singularity definition (.def) and image (.sif) files
├── rules/ # Snakemake rules for:
│ ├── anl # analyses
│ ├── dbs # databases
│ ├── dts # datasets
│ ├── mth # methods
│ └── plt # plots
├── scripts/ # Helper scripts for:
│ ├── anl # analyses
│ ├── dbs # databases
│ ├── dts # datasets
│ ├── mth # methods
│ └── plt # plots
└── Snakefile # Main Snakemake file
Here are some lines to generate important intermediate outputs:
# Downloads and processes a dataset, for example pbmc10k
snakemake --profile config/slurm/ dts/pbmc10k/cases/all/mdata.h5mu
# Computes Pando's preprocessing step on the pbmc10k dataset
snakemake --profile config/slurm/ dts/pbmc10k/cases/all/runs/pando.pre.h5mu
# Computes GRaNIE's p2g step on Pando's pre
snakemake --profile config/slurm/ dts/pbmc10k/cases/all/runs/pando.granie.p2g.csv
# Computes CellOracles's tfb step on GRaNIE's p2g
snakemake --profile config/slurm/ dts/pbmc10k/cases/all/runs/pando.granie.celloracle.tfb.csv
# Computes Dictys's mdl step on the previous results
snakemake --profile config/slurm/ dts/pbmc10k/cases/all/runs/pando.granie.celloracle.dictys.mdl.csv
# Runs all possible method combinations, baselines and original implementations
snakemake --profile config/slurm/ anl/topo/pbmc10k.all.sims_mult.csv
# Downloads and processess all databases
snakemake --profile config/slurm/ anl/dbs/stats.csv
# Runs the mechanistic metric forecasting (perturbation) for all method combinations
snakemake --profile config/slurm/ anl/metrics/mech/prt/knocktf/pbmc10k.all.scores.csv
# Runs the benchmark for all databases and metrics
snakemake --profile config/slurm/ anl/metrics/pbmc10k.all.csv
Badia-i-Mompel et al. Comparison and evaluation of methods to infer gene regulatory networks from multimodal single-cell data. bioRxiv (2024) doi:10.1101/2024.12.20.629764