Skip to content

Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

Notifications You must be signed in to change notification settings

sagiebenaim/DiscoGAN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DiscoGAN

Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.

Prerequisites

  • Python 2.7
  • PyTorch
  • Numpy/Scipy/Pandas
  • Progressbar
  • OpenCV

Training DiscoGAN

CelebA

Download CelebA dataset using

$ python ./datasets/download.py celebA 

(Currently, the link for downloading CelebA dataset is not available).

To train gender conversion,

$ python ./discogan/image_translation.py --task_name='celebA' --style_A='Male'

To train hair color conversion

$ python ./discogan/image_translation.py --task_name='celebA' --style_A='Blond_Hair' --style_B='Black_Hair' --constraint='Male'

Handbags / Shoes

Download Edges2Handbags dataset using

$ python ./datasets/download.py edges2handbags

Download Edges2Shoes dataset using

$ python ./datasets/download.py edges2shoes

To train Edges2Handbags,

$ python ./discogan/image_translation.py --task_name='edges2handbags'

To train Edges2Shoes,

$ python ./discogan/image_translation.py --task_name='edges2shoes' 

To train Handbags2Shoes,

$ python ./discogan/image_translation.py --task_name='Handbags2Shoes' --starting_rate=0.5

Facescrub

Download Facescrub dataset using

$ python ./datasets/download.py facescrub

To train gender conversion,

$ python ./discogan/image_translation.py --task_name='facescrub'

Car, Face

Download 3D car dataset used in Deep Visual Analogy-Making, and 3D face dataset into ./datasets folder and extract them.

To train Car2Car translation,

$ python ./discogan/angle_pairing.py --task_name='car2car' 

To train Car2Face translation,

$ python ./discogan/angle_pairing.py --task_name='car2face'

Run script.sh in order to train a model using other datasaet, after uncommenting corresponding line.

Results

All example results show x_A, x_AB, x_ABA and x_B, x_BA, x_BAB

Example results of hair color conversion

Example results of gender conversion (CelebA)

Example results of Edges2Handbags

Example results of Handbags2Shoes

Example results of gender conversion (Facescrub)

Example results of Car2Face

About

Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.4%
  • Shell 3.6%