This project implements RESTful APIs for the RAMPVIS system. This repository consist of the following top-level folders.
-
data-api
- Implemented in Python, FastAPI, and other Python libraries.
- APIs for all data.
- API implements processing functions, e.g., analytical algorithms, propagation, scheduler agents, etc.
-
infrastructure-api
- Implemented in Typescript, Node.js, Express.js, and other JavaScript libraries.
- APIs for ontology and database operations; authentication and user management; other infrastructure related services.
- Thumbnail and search index services.
-
This is tested in Ubuntu 22.04 and WSL.
-
Ensure docker is running.
-
We created multiple docker-compose scripts and each script handles a set of services. Sequentially start the services. Note that based on what version is installed either use
docker compose
ordocker-compose
. -
Update docker virtual memory size. Sometimes, the Elasticsearch services in docker crash due to a known issue:
max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144]
. Follow the instructions below to resolve this issue,
In WSL, run the following commnads in PowerShell. More information can be found here.
wsl -d docker-desktop cat /proc/sys/vm/max_map_count # current value
# 65530
wsl -d docker-desktop sysctl -w vm.max_map_count=262144
# vm.max_map_count = 262144
In Ubuntu, run the following command. More information can be found here.
sudo sysctl -w vm.max_map_count=262144
Stop & clean rampvis-ui and rampvis-ontology-management-ui
Following commands will stop the containers and and clean the images related to this repository.
# stop containers
docker-compose -f docker-compose-ext.yml stop
docker-compose -f docker-compose-int.yml stop
docker-compose -f docker-compose-seed.yml stop
# remove containers
docker-compose -f docker-compose-ext.yml rm
docker-compose -f docker-compose-int.yml rm
docker-compose -f docker-compose-seed.yml rm
# remove images
docker rmi mongo-setup seed-data rampvis-api_data-api rampvis-api_infrastructure-api
# remove volumes, e.g., database and search indices
docker volume rm rampvis-api_mongostatus rampvis-api_esdata01 rampvis-api_esdata02 rampvis-api_esdata03 rampvis-api_mongodata01 rampvis-api_mongodata02 rampvis-api_mongodata03
# remove all unused volumes
docker volume prune
# leave swarm network
docker swarm leave --force
# remove all unused networks
docker network prune
Create an overlay network to allow communication between docker applications:
docker swarm init
docker network create --driver overlay --attachable rampvis-api-network
# inspect the network
docker network inspect rampvis-api-network
The infrastructure APIs are dependent on database and search engine- MongoDB, Elasticsearch, and Kibana.
# start the services
docker-compose -f docker-compose-ext.yml up -d
Wait for sometime to let all the services to start. Check if the Elasticsearch (es01, es02, es03), Kibana (kib01), and MongoDB (mongodb01, mongodb02, mongodb03) services are running properly.
# check the status
docker-compose -f docker-compose-ext.yml ps
# the output should look like
# Name Command State Ports
# ----------------------------------------------------------------------------------------
# es01 /bin/tini -- /usr/local/bi ... Up 0.0.0.0:9200->9200/tcp, 9300/tcp
# es02 /bin/tini -- /usr/local/bi ... Up 9200/tcp, 9300/tcp
# es03 /bin/tini -- /usr/local/bi ... Up 9200/tcp, 9300/tcp
# kib01 /bin/tini -- /usr/local/bi ... Up 0.0.0.0:5601->5601/tcp
# mongo-setup docker-entrypoint.sh bash ... Exit 0
# mongodb01 /usr/bin/mongod --replSet ... Up 0.0.0.0:27017->27017/tcp
# mongodb02 /usr/bin/mongod --replSet ... Up 27017/tcp
# mongodb03 /usr/bin/mongod --replSet ... Up 27017/tcp
Run the following command to inspect any container log.
docker-compose -f docker-compose-ext.yml logs <container_name>
# for example, inspect es01
docker-compose -f docker-compose-ext.yml logs es01
Start the data-api and infrastructure-api
# start the services
docker-compose -f docker-compose-int.yml up -d
# check the status
docker-compose -f docker-compose-int.yml ps
# the output should look like
# Name Command State Ports
# ------------------------------------------------------------------------------------
# data-api uvicorn app.main:app --rel ... Up 0.0.0.0:4010->4010/tcp
# infrastructure-api docker-entrypoint.sh yarn dev Up 0.0.0.0:4000->4000/tcp
To test if the service internal services/APIs are started properly, open the following URLs
These the URLs should display the list of the APIs.
Note In order to start and debug the services locally see the data-api README and infrastructure-api README files.
This script will clear the databases and search indices, and seed the MongoDB data from the rampvis
folder. Do not run this if there is already available data that you do not want to remove.
# start the services
docker-compose -f docker-compose-seed.yml up -d
# check the status
docker-compose -f docker-compose-seed.yml ps
Injecting data and creating index may take some time, to inspect the log, run:
docker-compose -f docker-compose-seed.yml logs seed-data
To inspect if the index are created properly, run:
# check the search index
curl localhost:9200/_cat/indices
# the following index must be present in the oupuput
# green open rampvis.onto_vis 9d4VfZyyRCursKTYtVP-vw 1 1 27 0 65.1kb 32.5kb
# green open rampvis.onto_page nwrlo8-eR3OOSITUho4zRQ 1 1 11125 0 4mb 2mb
# green open rampvis.onto_data beS7p-fWTmWan-FA_ndhVw 1 1 18635 0 5.1mb 2.5mb
This figure illustrates the containers and their swarm network connections.
The rampvis-ui and rampvis-ontology-management-ui are in a different repository.
@article{Khan:2022:TSC,
author = {Khan, Saiful and Nguyen, Phong H. and Abdul-Rahman, Alfie and Freeman, Euan and Turkay, Cagatay and Chen, Min},
title = {Rapid Development of a Data Visualization Service in an Emergency Response},
journal = {IEEE Transactions on Services Computing},
volume = {15},
pages = {1251-1264},
year = {2022},
doi = {10.1109/TSC.2022.3164146}
}
@article{Khan2022:IEEE-TVCG,,
author = {Saiful Khan, Phong Nguyen, Alfie Abdul-Rahman, Benjamin Bach, Min Chen, Euan Freeman, and Cagatay Turkay},
title = {Propagating Visual Designs to Numerous Plots and Dashboards},
journal = {IEEE Transactions on Visualization and Computer Graphics},
pages = {86-95},
volume = {28},
year = {2022},
doi = {10.1109/TVCG.2021.3114828},
arxiv = {https://arxiv.org/abs/2107.08882}
}
URL: https://sites.google.com/view/rampvis/teams Email: saiful.etc@gmail.com