-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflow_reversal.py
120 lines (84 loc) · 3.63 KB
/
flow_reversal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# class WarpLayer warps image x based on optical flow flo.
import numpy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class FlowReversal(nn.Module):
"""docstring for WarpLayer"""
def __init__(self,):
super(FlowReversal, self).__init__()
def forward(self, img, flo):
"""
-img: image (N, C, H, W)
-flo: optical flow (N, 2, H, W)
elements of flo is in [0, H] and [0, W] for dx, dy
"""
# (x1, y1) (x1, y2)
# +---------------+
# | |
# | o(x, y) |
# | |
# | |
# | |
# | |
# +---------------+
# (x2, y1) (x2, y2)
N, C, _, _ = img.size()
# translate start-point optical flow to end-point optical flow
y = flo[:, 0:1 :, :]
x = flo[:, 1:2, :, :]
x = x.repeat(1, C, 1, 1)
y = y.repeat(1, C, 1, 1)
# Four point of square (x1, y1), (x1, y2), (x2, y1), (y2, y2)
x1 = torch.floor(x)
x2 = x1 + 1
y1 = torch.floor(y)
y2 = y1 + 1
# firstly, get gaussian weights
w11, w12, w21, w22 = self.get_gaussian_weights(x, y, x1, x2, y1, y2)
# secondly, sample each weighted corner
img11, o11 = self.sample_one(img, x1, y1, w11)
img12, o12 = self.sample_one(img, x1, y2, w12)
img21, o21 = self.sample_one(img, x2, y1, w21)
img22, o22 = self.sample_one(img, x2, y2, w22)
imgw = img11 + img12 + img21 + img22
o = o11 + o12 + o21 + o22
return imgw, o
def get_gaussian_weights(self, x, y, x1, x2, y1, y2):
w11 = torch.exp(-((x - x1)**2 + (y - y1)**2))
w12 = torch.exp(-((x - x1)**2 + (y - y2)**2))
w21 = torch.exp(-((x - x2)**2 + (y - y1)**2))
w22 = torch.exp(-((x - x2)**2 + (y - y2)**2))
return w11, w12, w21, w22
def sample_one(self, img, shiftx, shifty, weight):
"""
Input:
-img (N, C, H, W)
-shiftx, shifty (N, c, H, W)
"""
N, C, H, W = img.size()
# flatten all (all restored as Tensors)
flat_shiftx = shiftx.view(-1)
flat_shifty = shifty.view(-1)
flat_basex = torch.arange(0, H, requires_grad=False).view(-1, 1)[None, None].cuda().long().repeat(N, C, 1, W).view(-1)
flat_basey = torch.arange(0, W, requires_grad=False).view(1, -1)[None, None].cuda().long().repeat(N, C, H, 1).view(-1)
flat_weight = weight.view(-1)
flat_img = img.view(-1)
# The corresponding positions in I1
idxn = torch.arange(0, N, requires_grad=False).view(N, 1, 1, 1).long().cuda().repeat(1, C, H, W).view(-1)
idxc = torch.arange(0, C, requires_grad=False).view(1, C, 1, 1).long().cuda().repeat(N, 1, H, W).view(-1)
# ttype = flat_basex.type()
idxx = flat_shiftx.long() + flat_basex
idxy = flat_shifty.long() + flat_basey
# recording the inside part the shifted
mask = idxx.ge(0) & idxx.lt(H) & idxy.ge(0) & idxy.lt(W)
# Mask off points out of boundaries
ids = (idxn*C*H*W + idxc*H*W + idxx*W + idxy)
ids_mask = torch.masked_select(ids, mask).clone().cuda()
# Note here! accmulate fla must be true for proper bp
img_warp = torch.zeros([N*C*H*W, ]).cuda()
img_warp.put_(ids_mask, torch.masked_select(flat_img*flat_weight, mask), accumulate=True)
one_warp = torch.zeros([N*C*H*W, ]).cuda()
one_warp.put_(ids_mask, torch.masked_select(flat_weight, mask), accumulate=True)
return img_warp.view(N, C, H, W), one_warp.view(N, C, H, W)