Skip to content

Syntactic sugar inspired by XPath to GET, SET, UPDATE and FLATTEN values from nested dictionaries and nested lists.

License

Notifications You must be signed in to change notification settings

saintlyzero/NestedFetch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

50 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

ℕ𝕖𝕀π•₯𝕖𝕕𝔽𝕖π•₯𝕔𝕙

Build Status GitHub PyPI - Python Version

Outline

  1. Overview
  2. Installation
  3. Usage
  4. Examples
    1. Fetch Value
    2. Set Value
    3. Flatten Nested Lists
  5. How to Contribute

Overview

  • NestedFetch provides syntactic sugar 🍬 inspired by XPath to deal with a nested python dictionary or a nested list 🐍
  • You can get, set, update and flatten values from a deeply nested dictionary or a list with a more concise, easier and a KeyError, IndexError free way 😌
data = {
        "league": "Champions League",
        "matches": [
            {
                "match_id": "match_1",
                "goals": [
                {
                    "time": 13,
                    "scorrer": "Lionel Messi",
                    "assist": "Luis Suarez"
                },
                {
                    "time": 78,
                    "scorrer": "Luis Suarez",
                    "assist": "Ivan Rakitic"
                }]
            },
            {
                "match_id": "match_2",
                "goals": [
                {
                    "time": 36,
                    "scorrer": "C. Ronaldo",
                    "assist": "Luka Modric"
                }]
            }]
        }
No Face normal code
Yes Face NestedFetch code

Installation

NestedFetch works with Python3.
You can directly install it via pip

$ pip3 install nestedfetch

Usage

Import the methods from the package.

from nestedfetch import nested_get, nested_set, flatten_data

No need to instantiate any object, just use the methods specifying valid parameters.

Examples

Fetch Data

nested_get(data, keys, default=None, flatten=False)

@Arguments
data : dict / list
keys => List of sequential keys leading to the desired value to fetch
default => Specifies the default value to be returned if any specified key is not present. If not specified, it will be None
flatten => Specifies whether to flatten the returned value

@Return
Returns the fetched value if it exists, or returns specified default value
  • Fetch simple nested data :
data = {
            'name': 'Jesse Pinkman',
            'details': {
                'address':{
                    'city': 'Albuquerque'
                }
            }
        }
res = nested_get(data,['details','address','city'])
# res = Albuquerque
  • Fetch simple nested data with default value:
data = {
            'name': 'Jesse Pinkman',
            'details': {
                'address':{
                    'city': 'Albuquerque'
                }
            }
        }
res = nested_get(data,['details','address','state'], default=-1)
# res = -1
  • Fetch nested data:
data = {
            'name': 'Jesse Pinkman',
            'details': {
                'address':[{
                    'city': 'Albuquerque'
                },{
                    'city': 'El Paso'
                }]
            }
        }
res = nested_get(data,['details','address','city'])
# res = ['Albuquerque','El Paso']
  • Fetch nested data with default value:
data = {
            'name': 'Jesse Pinkman',
            'details': {
                'address':[{
                    'city': 'Albuquerque'
                },{
                    'city': 'El Paso'
                },{
                    'state': 'New Mexico'
                }]
            }
        }
res = nested_get(data,['details','address','city'], default= None)
# res = ['Albuquerque','El Paso', None]
  • Fetch nested data by specifing index:
data = {
            'name': 'Walter White',
            'details': {
                'address':[{
                    'city': 'Albuquerque'
                },{
                    'city': 'El Paso'
                }]
            }
        }
res = nested_get(data,['details','address','city', 0])
# res = Albuquerque
  • Fetch nested data without flatten:
data = {
        "league": "Champions League",
        "matches": [
            {
                "match_id": "match_1",
                "goals": [
                {
                    "time": 13,
                    "scorrer": "Lionel Messi",
                    "assist": "Luis Suarez"
                },
                {
                    "time": 78,
                    "scorrer": "Luis Suarez",
                    "assist": "Ivan Rakitic"
                }]
            },
            {
                "match_id": "match_2",
                "goals": [
                {
                    "time": 36,
                    "scorrer": "C. Ronaldo",
                    "assist": "Luka Modric"
                }]
            }]
        }
res = nested_get(data,['matches','goals','scorrer'])
# res = [['Lionel Messi', 'Luis Suarez'], ['C. Ronaldo']]
  • Fetch nested data with flatten:
data = {
        "league": "Champions League",
        "matches": [
            {
                "match_id": "match_1",
                "goals": [
                {
                    "time": 13,
                    "scorrer": "Lionel Messi",
                    "assist": "Luis Suarez"
                },
                {
                    "time": 78,
                    "scorrer": "Luis Suarez",
                    "assist": "Ivan Rakitic"
                }]
            },
            {
                "match_id": "match_2",
                "goals": [
                {
                    "time": 36,
                    "scorrer": "C. Ronaldo",
                    "assist": "Luka Modric"
                }]
            }]
        }
res = nested_get(data,['matches','goals','scorrer'], flatten=True)
# res = ['Lionel Messi', 'Luis Suarez', 'C. Ronaldo']

Set / Update Data

nested_set(data, keys, value, create_missing=False):

@Arguments
data => dict / list
keys => List of sequential keys leading to the desired value to set / update
value => Specifies the value to set / update
create_missing => Specifies whether to create new key while building up if the specified key does not exists

@Return
Returns the number of values updated
  • Update value of simple nested data :
data = {
            'name': 'Jesse Pinkman',
            'details': {
                'address':{
                    'city': 'Albuquerque'
                }
            }
        }
res = nested_set(data,['details','address','city'], "Denver")
# res = 1

# data = {
#             'name': 'Jesse Pinkman',
#             'details': {
#                 'address':{
#                     'city': 'Denver'
#                 }
#             }
#         }
  • Update nested data:
data = {
            'name': 'Jesse Pinkman',
            'details': {
                'address':[{
                    'city': 'Albuquerque'
                },{
                    'city': 'El Paso'
                }]
            }
        }
res = nested_set(data,['details','address','city'], "Denver")
# res = 2

# data = {
#     'name': 'Jesse Pinkman',
#     'details': {
#         'address':[{
#             'city': 'Denver'
#         },{
#             'city': 'Denver'
#         }]
#     }
# }
  • Update nested data with index:
data = {
            'name': 'Jesse Pinkman',
            'details': {
                'address':[{
                    'city': 'Albuquerque'
                },{
                    'city': 'El Paso'
                }]
            }
        }
res = nested_set(data,['details','address',0,'city'], "Denver")
# res = 1

# data = {
#     'name': 'Jesse Pinkman',
#     'details': {
#         'address':[{
#             'city': 'Denver'
#         },{
#             'city': 'El Paso'
#         }]
#     }
# }
  • Set nested data with create_missing :
data = {
            'name': 'Jesse Pinkman',
            'details': {
                'address':{
                    'city': 'Albuquerque'
                }
            }
        }
res = nested_set(data,['details','address','state'], "New Mexico", create_missing=True)
# res = 1

# data = {
#             'name': 'Jesse Pinkman',
#             'details': {
#                 'address':{
#                     'city': 'Denver',
#                     'state': 'New Mexico'
#                 }
#             }
#         }

Flatten Nested Lists

flatten_data(data):

@Arguments
data => list of list

@Return
Returns the flattened list
  • Flatten List of Lists
data = [[
    ['This','is'],
    ['flattened', 'data']
]]

res = flatten_data(data)
# res = ['This','is','flattened','data']

How to contribute

Contributions are welcome πŸ˜‡.
Feel free to submit a patch, report a bug πŸ› or ask for a feature 🐣.
Please open an issue first to encourage and keep track of potential discussions πŸ“.

About

Syntactic sugar inspired by XPath to GET, SET, UPDATE and FLATTEN values from nested dictionaries and nested lists.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages