forked from BitSeq/BitSeq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parseAlignment.py
executable file
·482 lines (439 loc) · 16.8 KB
/
parseAlignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#!/usr/bin/python
# Initialization {{{
import sys
import numpy as np
def normpdf(x,m,s):
return 1./(s*2.5066282746310002)*np.exp(-1./(2.0*s*s)*(x-m)**2.)
import os, time # needed for this:
time_str = time.strftime("%b %e %Y %H:%M:%S", time.gmtime(os.lstat(sys.argv[0]).st_mtime));
print "###",os.path.basename(sys.argv[0]),"build:",time_str;
# {{{ parse arguments and set filenames
from optparse import OptionParser
parser = OptionParser(usage="%prog [options]\n -a -t are necessary\n -e is adviced")
parser.add_option("-T", "--transcriptPrefix", dest="tPref", help="Prefix of transcript names within MAP file (e.g. hg19_ensGene_ for ensembl genes from UCSC)", type="string")
parser.add_option("-p", "--prefix", dest="pref", help="Experiment prefix, use same prefix for all files (.map, .tr, .prob)", type="string")
parser.add_option("-a", "--alignmentFile", dest="aFile", help="Alignments file name", type="string")
parser.add_option("-A", "--alignmentFileType", dest="aType", default="bowtie", help="Alignments file type", type="string")
parser.add_option("-t", "--transcriptFile", dest="tFile", help="File with with list of transcripts (second column) and their lengths (third column, used later).", type="string")
parser.add_option("-o", "--out", dest="oFile", help="Output name (should end with .prob).", type="string")
parser.add_option("-N", "--totalN", dest = "totalN", help="Total number of reads. If <name>.map.bowtieLog does not exist this number has to be provided", type="int")
parser.add_option("-i", "--inputType", dest = "inputType", help="Input file type determines the assignemnt of probability for each read (fastq, fastq33, fasta)", default="fastq");
parser.add_option("-v", "--verbose", default=False, dest="verbose", action="store_true", help="Verbose output")
parser.add_option("--vv", default=False, dest="veryVerbose", action="store_true", help="Very verbose output")
parser.add_option("--paired", default=False, dest="paired", action="store_true", help="Flag fo paired alignemnts")
parser.add_option("--IamSure", default=False, dest="amSure", action="store_true", help="I am sure I want to use this.")
(options, args) = parser.parse_args()
if not options.amSure:
sys.exit("Please use new implementation of parsing algorithm \"parseAlignment\". If you really want to use this program use the option --IamSure.");
if options.tPref !=None:
prefixL = len(options.tPref);
else:
prefixL = 0;
if options.pref :
aFileName=options.pref+".map"
oFileName=options.pref+".prob"
tFileName=options.pref+".tr"
else:
if not options.aFile:
sys.exit("Need alignemnt file name.");
if not options.oFile:
sys.exit("Need output file name.");
if not options.tFile:
sys.exit("Need transcript file name.");
if options.aFile:
aFileName=options.aFile
if options.oFile:
oFileName=options.oFile
if options.tFile:
tFileName=options.tFile;
#}}}
#{{{ get total number of reads, possibly from <file>.map.bowtieLog
Ntotal = 0
if options.totalN :
Ntotal = options.totalN;
else:
try:
bLog = open(aFileName+".bowtieLog");
for line in bLog:
if line.find("# reads processed:")>-1:
Ntotal = int( line[line.find("# reads processed:")+18:].split()[0] );
# in other words take first wor after "reads processed:" and convert it to Ntotal
break;
bLog.close();
if Ntotal <= 0:
sys.exit("File read, but Ntotal was "+str(Ntotal));
except:
sys.exit( "Was not able to read file "+aFileName+".bowtieLog . Please provide number of reads (-N atribute) or the log file.")
#}}}
def nuc2i(str):#{{{
if str.lower() == "a": return 0;
if str.lower() == "c": return 1;
if str.lower() == "g": return 2;
if str.lower() == "t": return 3;
return 4;
#}}}
def verbose(str):#{{{
if options.verbose:
print str;
#}}}
verbose("Using files:\n "+aFileName+" for reading alignments\n "+oFileName+" for writing probabilities\n "+tFileName+" for writing transcript info");
# {{{ reading transcript info
try:
tFile = open(tFileName,"r")
except:
sys.exit("Unable to open transcript file: "+tFileName+" .");
trMap=dict()
i=0;
for line in tFile:
if line[0] == '#': continue;
trMap[line.split()[1]]=i+1;
#trMap[line.split()[1][prefixL:]]=i+1;
i+=1;
trN=i;
tFile.close();
#}}}
# {{{ open output file
try:
oFile = open(oFileName,"w");
except:
sys.exit("Unable to open output file: "+oFileName+" .");
#}}}
#{{{ open alignment file and check number of columns
if options.aType != "bowtie":
sys.exit("Unrecognized alignment type.");
try:
aFile = open(aFileName,"r")
except:
sys.exit("Unable to open alignments file: "+aFileName+" .");
alignment=aFile.readline().rstrip().split("\t");
columnN=len(alignment)+1; # expect no mismatch info
try:
x = int(alignment[columnN-2]); # this works if last column is NOT mismatch info
except:
columnN -= 1; # otherwise decrease number of columns
colS = columnN - 8; # if 8 columns, no shift necessary
verbose("columns: "+str(columnN));
aFile.seek(0);
#}}}
# }}}
if options.inputType=="fasta": #{{{
minReadLength=25;
pseudoCount = 1.0;
nucProb = [[[pseudoCount for i in range(5)] for k in range(5)] for j in range(minReadLength)];
noiseProb = [pseudoCount for i in range(5)];
verbose("Estimating mismatch probability."); # {{{
readId=""
mismatch=""
hadMismatches=True;
readN = 0;
verbose("Use all reads, not only unique.");
for line in aFile:
alignment=line.rstrip().split("\t");
readSeq=alignment[4+colS]
if alignment[1+colS]=="-":
readSeq = readSeq[::-1];
if alignment[0] != readId or readSeq != seq:
readId=alignment[0];
readN+=1;
if not hadMismatches:
while len(seq) > len(nucProb):
nucProb.append([[pseudoCount for i in range(5)] for k in range(5)]);
for i in range(len(seq)):
nuc1 = nuc2i(seq[i]);
nucProb[i][nuc1][nuc1]+=1;
hadMismatches=False;
seq = readSeq;
mismatch=""
for nuc in seq:
noiseProb[nuc2i(nuc)]+=1
if len(alignment)==columnN:
if alignment[columnN-1] != mismatch:
while len(seq) > len(nucProb):
nucProb.append([[pseudoCount for i in range(5)] for k in range(5)]);
for i in range(len(seq)):
nuc1 = nuc2i(seq[i]);
nucProb[i][nuc1][nuc1]+=1;
hadMismatches = True;
mismatch=alignment[columnN-1]
mismatchArray = mismatch.split(",");
for mis in mismatchArray:
pos = int( mis.split(":")[0] );
nuc1 = nuc2i( mis.split(":")[1].split(">")[0] );
nuc2 = nuc2i( mis.split(":")[1].split(">")[1] );
# while pos >= len(nucProb):
# nucProb.append([[pseudoCount for i in range(5)] for k in range(5)]);
nucProb[pos][ nuc2 ][ nuc2 ]-=1;
if nucProb[pos][nuc2][nuc2]<1 : print pos,nuc2,seq,mismatch;
nucProb[pos][ nuc1 ][ nuc2 ]+=1;
# }}}
"""verbose("Using only unique reads");#{{{
for line in aFile:
alignment=line.split();
if alignment[4] != seq:
seq=alignment[4]
if mismatch != "":
mismatchArray = mismatch.split(",");
for mis in mismatchArray:
pos = int( mis.split(":")[0] );
nuc1 = mis.split(":")[1].split(">")[0];
nuc2 = mis.split(":")[1].split(">")[1];
while pos <= len(nucProb):
nusProb.append([[pseudoCount for i in range(5)] for k in range(5)]);
nucProb[pos][ nuc2i(nuc1) ][ nuc2i(nuc2) ]+=1;
if len(alignment>7):
mismatch=alignment[7];
for nuc in seq:
noiseProb[nuc2i(nuc)]+=1
else:
mismatch=""
#}}}"""
verbose("Estimating probability of noise from aligned reads.") #{{{
total=sum(noiseProb);
for i in range(5):
noiseProb[i] /= total;
verbose("Estimating nucleotide mismatch matrix.");
for i in range(len(nucProb)):
for j in range(5):
total = sum( nucProb[i][j] );
for k in range(5):
nucProb[i][j][k] /= total;
if options.veryVerbose:
print "Noise probabilities: ";
print " ",;
print noiseProb;
print "Nucleotide mismatch matrix:";
for i in range(len(nucProb)):
print "Position ",i,":\n ",;
print nucProb[i];
#}}}
verbose("Writing alignment probabilities"); # {{{
aFile.seek(0);
alignment=aFile.readline().rstrip().split("\t");
readId=alignment[0];
if alignment[1+colS] == "+":
seq=alignment[4+colS];
else:
seq=alignment[4+colS][::-1];
prob = 1.0;
for nuc in seq:
prob *= noiseProb[nuc2i(nuc)];
alignments=[(0,alignment[1+colS],prob)];
aFile.seek(0);
alN = 0;
oFile.write("# Ntotal "+str(Ntotal)+"\n");
oFile.write("# Nmap "+str(readN)+"\n");
for line in aFile:
alignment=line.rstrip().split("\t");
alN+=1;
readSeq=alignment[4+colS]
if alignment[1+colS]=="-":
readSeq = readSeq[::-1];
# write old and init new reads
if readId!=alignment[0] or readSeq!=seq:
readId = readId.replace(" ","_");
oFile.write(readId+" "+str(len(alignments))+" alignments:");
for align in alignments:
oFile.write(" " + str(align[0]) + " " + align[1] + " " + str(align[2]));
oFile.write("\n");
readId=alignment[0];
seq = readSeq;
del alignments[:]
prob = 1.0;
for nuc in seq:
prob *= noiseProb[nuc2i(nuc)];
alignments.append((0,alignment[1+colS],prob));
# set transcript id
if alignment[2+colS][prefixL:] in trMap:
trans = trMap[ alignment[2+colS][prefixL:] ];
else:
trans = 0;
print "Transcript '"+alignment[2+colS]+"' or '"+alignment[2+colS][prefixL:]+"' was not found in the transcript file.";
#print alignment;
# calculate probabilities
prob=1.0;
for i in range(len(seq)):
nuc1 = nuc2i(seq[i]);
prob *= nucProb[i][nuc1][nuc1];
if len(alignment)==columnN:
mismatch=alignment[columnN-1]
mismatchArray = mismatch.split(",");
for mis in mismatchArray:
pos = int( mis.split(":")[0] );
nuc1 = nuc2i( mis.split(":")[1].split(">")[0] );
nuc2 = nuc2i( mis.split(":")[1].split(">")[1] );
prob /= nucProb[pos][ nuc2 ][ nuc2 ];
prob *= nucProb[pos][ nuc1 ][ nuc2 ];
# add new alignment to list
alignments.append( (trans, alignment[1+colS], prob) );
# if len(alignments)>2 and alignments[len(alignments)-1][2]!=alignments[len(alignments)-2][2]:
# print readId;
readId = readId.replace(" ","_");
oFile.write(readId+" "+str(len(alignments))+" alignments:");
for align in alignments:
oFile.write(" " + str(align[0]) + " " + str(align[1]) + " " + str(align[2]));
oFile.write("\n");
# }}}
# end if options.inputType=="fasta" }}}
else:
# {{{ qTOp functions
if options.inputType=="fastq": Qshift=64;
if options.inputType=="fastq33": Qshift=33;
phredWarning = False;
def qTOp(Q):
phredS = float(ord(Q)-Qshift);
if phredS<0:
if not phredWarning:
print "WARNING: Phred score too low (",int(phredS),") perhpas use --inputType fastq33.";
phredWarning=True;
elif phredS>65:
if not phredWarning:
print "NOTE: Phred score unnaturally high (",int(phredS),") check your input type and perhaps set --inputType fastq.";
phredWarning=True;
return 1-10**( phredS / -10);
def qTOpInvert(Q):
p = 1-10**(float(ord(Q)-Qshift) / -10);
if p==0: return 1;
return (1-p)/p;
#}}}
# {{{ counting reads
readN = 0
rId = "";
seq = "";
phread = "";
aFile.seek(0);
frags=[]
while True:
line = aFile.readline();
if line == "": break; # empty line means end of file
if options.paired:
line2=aFile.readline();
alignment=line.rstrip().split("\t");
readId=alignment[0];
readSeq=alignment[4+colS]
readPhread=alignment[5+colS];
if readId != rId or readSeq != seq or readPhread != phread:
readN+=1;
rId=readId;
seq=readSeq;
phread=readPhread;
if options.paired:
frags.append( int(line2.rstrip().split("\t")[3+colS]) - int(alignment[3+colS]) );
if options.paired:
fragMu = np.mean(frags)
fragStD = np.std(frags)
# }}}
verbose("Writing alignment probabilities");
aFile.seek(0);
#{{{ read first read identificators
alignment=aFile.readline().rstrip().split("\t");
readId=alignment[0];
if alignment[1+colS] == "+":
seq=alignment[4+colS];
phread=alignment[5+colS]
else:
seq=alignment[4+colS][::-1];
phread=alignment[5+colS][::-1]
prob=1.0;
for Q in phread:
prob *= qTOp(Q);
if options.paired: #secon pair
align2 = aFile.readline().rstrip().split("\t");
fragL = int( align2[3+colS]) - int(alignment[3+colS]);
prob *= normpdf(fragL,fragMu,fragStD);
if align2[1+colS] == "+":
phread2=align2[5+colS]
else:
phread2=align2[5+colS][::-1]
for Q in phread2:
prob *= qTOp(Q);
alignments=[]
aFile.seek(0);
#}}}
alN = 0;
oFile.write("# Ntotal "+str(Ntotal)+"\n");
oFile.write("# Nmap "+str(readN)+"\n");
while True:
line=aFile.readline();
if line == "": break; # empty line means end of file
alignment=line.rstrip().split("\t");
alN+=1;
readSeq=alignment[4+colS]
readPhread=alignment[5+colS]
if alignment[1+colS]=="-":
readPhread = readPhread[::-1]
readSeq = readSeq[::-1];
if options.paired:
align2 = aFile.readline().rstrip().split("\t")
r2Phread = align2[5+colS]
if align2[1+colS]=="-":
r2Phread = r2Phread[::-1];
else: r2Phread = "";
# write old and init new reads
if readId!=alignment[0] or readSeq!=seq or readPhread!=phread:
readId = readId.replace(" ","_");
oFile.write(readId+" "+str(len(alignments)+1)+" alignments:");
minProb = 1;
for align in alignments:
if minProb > align[2]: minProb=align[2];
oFile.write(" " + str(align[0]) + " " + align[1] + " " + str(align[2]));
oFile.write(" 0 + " + str(minProb*qTOpInvert(phread[0])*qTOpInvert(phread[1])*qTOpInvert(phread[2])));
# add noise alignment with 3 extra mismatches on first bases
oFile.write("\n");
readId=alignment[0];
seq = readSeq;
phread=readPhread;
del alignments[:]
prob=1.0;
for Q in phread:
prob *= qTOp(Q);
if options.paired:
fragL = int(align2[3+colS])-int(alignment[3+colS]);
prob *= normpdf(fragL, fragMu, fragStD);
phread2=r2Phread;
for Q in phread2:
prob *= qTOp(Q);
# set transcript id
if alignment[2+colS][prefixL:] in trMap:
trans = trMap[ alignment[2+colS][prefixL:] ];
else:
trans = 0;
print "Transcript '"+alignment[2+colS]+"' or '"+alignment[2+colS][prefixL:]+"' was not found in the transcript file.";
#print alignment;
# calculate probabilities
probLoc = prob;
if len(alignment)==columnN:
mismatch=alignment[columnN-1]
mismatchArray = mismatch.split(",");
for mis in mismatchArray:
try:
pos = int( mis.split(":")[0] );
except:
pos=0;
print 'X',mis,'X',alignment;
probLoc = probLoc * qTOpInvert(phread[pos]);
if options.paired and len(align2)==columnN:
mismatch=align2[columnN-1]
mismatchArray = mismatch.split(",");
for mis in mismatchArray:
try:
pos = int( mis.split(":")[0] );
except:
pos=0;
print mis
probLoc = probLoc * qTOpInvert(phread2[pos]);
# add new alignment to list
alignments.append( (trans, alignment[1+colS], probLoc) );
# if len(alignments)>2 and alignments[len(alignments)-1][2]!=alignments[len(alignments)-2][2]:
# print readId;
readId = readId.replace(" ","_");
oFile.write(readId+" "+str(len(alignments)+1)+" alignments:");
minProb = 1;
for align in alignments:
if minProb > align[2]: minProb=align[2];
oFile.write(" " + str(align[0]) + " " + str(align[1]) + " " + str(align[2]));
oFile.write(" 0 + " + str(minProb*qTOpInvert(phread[0])*qTOpInvert(phread[1])*qTOpInvert(phread[2])));
# add noise alignment with 1 extra mismatch on first base
oFile.write("\n");
print "Processed:\n ",alN,"alignments + (",readN,"noise alignments)\n ",readN,"reads\n ",trN,"transcripts\nTotal reads: ",Ntotal,"\n";
aFile.close();
oFile.close();