Skip to content

Latest commit

 

History

History
19 lines (16 loc) · 1.74 KB

README.md

File metadata and controls

19 lines (16 loc) · 1.74 KB

FPFS-CMC

A Classification Method in Machine Learning Based on Soft Decision-Making via Fuzzy Parameterized Fuzzy Soft Matrices

Citation: Memiş, S., Enginoğlu, S., Erkan, U., 2022. A Classification Method in Machine Learning Based on Soft Decision-Making via Fuzzy Parameterized Fuzzy Soft Matrices. Soft Computing, 26(3), 1165–1180. doi: https://doi.org/10.1007/s00500-021-06553-z

Abstract:

Fuzzy parameterized fuzzy soft matrices (fpfs-matrices) which can model problems involving fuzzy objects and parameters are one of the mathematical tools used to deal with decision-making problems. To utilize soft decision-making methods via fpfs-matrices in machine learning is likely to draw much scholarly attention. In this paper, we propose Comparison Matrix-Based Fuzzy Parameterized Fuzzy Soft Classifier (FPFS-CMC) in order to transfer modeling success of fpfs-matrices to machine learning. We then compare FPFS-CMC with Fuzzy Soft Set Classifier (FSSC), FussCyier, Fuzzy Soft Set Classification Using Hamming Distance (HDFSSC), and Fuzzy k-Nearest Neighbor (Fuzzy kNN) in consideration of accuracy, precision, recall, macro-F-score, and micro-F-score performance metrics, and 15 datasets in UCI Machine Learning Repository. Besides, we compare the proposed classifier with the state-of-the-art Support Vector Machine (SVM), Decision Tree (DT), and Adaptive Boosting (AdaBoost) in terms of five performance metrics herein. Afterward, the results from the experiments are analyzed by employing the Friedman and Nemenyi tests to assess the statistical significance of the differences in performances. Both experimental and statistical results show that FPFS-CMC outperforms the others. Finally, we provide the conclusive remarks and some suggestions for further research.