forked from SDiserens/Continuous-Integration-Lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFiniteElements.py
525 lines (446 loc) · 21.3 KB
/
FiniteElements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# -*- coding: utf-8 -*-
"""
Finite Elements Coursework for Simulation and Modelling Assignment #2 2016
README:
There are two classes, FiniteElements and the assosciated FiniteElementsTest class.
The unit-testing is being run from within main() as is the code to generate
the required plots.
The code required to generate the mesh and associated functionality have been
copied from the assignment description.
@author: P.Bartram@soton.ac.uk
"""
import numpy as np
import unittest
import sympy
print('#################################################################')
print('Congratulations, Steve?, the Finite Element code is running successfully!')
print('#################################################################')
class FiniteElements():
''' This class will perform finite element analysis on a specified grid. '''
def _CalculateShapeFunctions(self, inputs):
''' Calculate the values of a given shape function for the xi and eta
values specified.
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
- inputs : np.array(float) length 2
The location within the given reference triangle.
Returns
----------
- N0, N1, N2
The shape function values themselves.
'''
assert type(inputs) == np.ndarray or type(inputs) == list, \
'inputs is not of type np.ndarray / list but {}'.format(type(inputs))
assert len(inputs) == 2, \
'length of inputs is not 2 but {}'.format(len(inputs))
xi, eta = inputs
N0 = 1 - eta - xi
N1 = xi
N2 = eta
return N0, N1, N2
def _CalculateShapeFunctionDerivatives(self):
''' Returns the derivatives of the shape functions.
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Returns
----------
- tuple: de, dn - each of three elements
The derivatives of the shape function.
'''
de = -1, 1, 0
dn = -1, 0, 1
return de, dn
def _CalculateGlobalCoordinatesGivenLocalCoordinates(self, X, localCoordinates):
''' Calculate the global coordinates given the element node locations and
the local coordinates within that element
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
- X : np.array(3,2)
The global coordinates of the element nodes.
- localCoordinates: np.array(2)
The local coordinates specified in terms of the reference triangle.
Returns
----------
- tuple(2) : (global_x, global_y)
The global location of the specified point on the mesh.
'''
assert type(X) == np.ndarray or type(X) == list, \
'X is not of type np.ndarray / list but {}'.format(type(X))
assert type(localCoordinates) == np.ndarray or type(localCoordinates) == list, \
'localCoordinates is not of type np.ndarray / list but {}'.format(type(localCoordinates))
assert len(localCoordinates) == 2, \
'length of localCoordinates is not 2 but {}'.format(len(localCoordinates))
assert len(X) == 3, \
'length of X is not 3 but {}'.format(len(X))
assert len(X[0]) == 2, \
'length of X[0] is not 2 but {}'.format(len(X[0]))
x = X[:,0]
y = X[:,1]
# Unpack all of our inputs and name properly.
x0, x1, x2 = x
y0, y1, y2 = y
# Calculate the shape functions based upon the local specified coordinates.
shapeFunctions = self._CalculateShapeFunctions(localCoordinates)
# Extract and rename fields for clarity
N0, N1, N2 = shapeFunctions
# Calculate the global coordinates
global_x = x0*N0 + x1*N1 + x2*N2
global_y = y0*N0 + y1*N1 + y2*N2
# Return the global coordinates.
return global_x, global_y
def _CalculateJacobianGivenLocalCoordinates(self, X, localCoordinates):
''' Calculate the Jacobian matrix at the location specified.
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
- X : np.array(3,2)
The global coordinates of the element nodes.
- localCoordinates: np.array(2)
The local coordinates specified in terms of the reference triangle.
Returns
----------
- np.array(2,2) : J
The Jacobian matrix at that location.
'''
assert type(X) == np.ndarray or type(X) == list, \
'X is not of type np.ndarray / list but {}'.format(type(X))
assert type(localCoordinates) == np.ndarray or type(localCoordinates) == list, \
'localCoordinates is not of type np.ndarray / list but {}'.format(type(localCoordinates))
assert len(localCoordinates) == 2, \
'length of localCoordinates is not 2 but {}'.format(len(localCoordinates))
assert len(X) == 3, \
'length of X is not 3 but {}'.format(len(X))
assert len(X[0]) == 2, \
'length of X[0] is not 2 but {}'.format(len(X[0]))
x = X[:,0]
y = X[:,1]
x0, x1, x2 = x
y0, y1, y2 = y
shapeDerivatives = self._CalculateShapeFunctionDerivatives()
de, dn = shapeDerivatives
dx_de = x0*de[0] + x1*de[1] + x2*de[2]
dx_dn = x0*dn[0] + x1*dn[1] + x2*dn[2]
dy_de = y0*de[0] + y1*de[1] + y2*de[2]
dy_dn = y0*dn[0] + y1*dn[1] + y2*dn[2]
J = np.array([[dx_de, dy_de],[dx_dn, dy_dn]])
return J
def _CalculateJacobianDeterminantGivenLocalCoordinates(self, X, localCoordinates):
''' Calculate the determinant of the Jacobian matrix at the location specified.
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
- X : np.array(3,2)
The global coordinates of the element nodes.
- localCoordinates: np.array(2)
The local coordinates specified in terms of the reference triangle.
Returns
----------
- det(J)
The determinant of the Jacobian matrix at the location specified.
'''
assert type(X) == np.ndarray or type(X) == list, \
'X is not of type np.ndarray / list but {}'.format(type(X))
assert type(localCoordinates) == np.ndarray or type(localCoordinates) == list, \
'localCoordinates is not of type np.ndarray / list but {}'.format(type(localCoordinates))
assert len(localCoordinates) == 2, \
'length of localCoordinates is not 2 but {}'.format(len(localCoordinates))
assert len(X) == 3, \
'length of X is not 3 but {}'.format(len(X))
assert len(X[0]) == 2, \
'length of X[0] is not 2 but {}'.format(len(X[0]))
J = self._CalculateJacobianGivenLocalCoordinates(X, localCoordinates)
return np.linalg.det(J)
def _CalculateDerivativesOfShapeFunctionsInGlobalCoordinates(self, X, localCoordinates):
''' Calculate the derivative of the shape function at the location specified.
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
- X : np.array(3,2)
The global coordinates of the element nodes.
- localCoordinates: np.array(2)
The local coordinates specified in terms of the reference triangle.
Returns
----------
- det(J)
The derivatives of the shape function.
'''
assert type(X) == np.ndarray or type(X) == list, \
'X is not of type np.ndarray / list but {}'.format(type(X))
assert type(localCoordinates) == np.ndarray or type(localCoordinates) == list, \
'localCoordinates is not of type np.ndarray / list but {}'.format(type(localCoordinates))
assert len(localCoordinates) == 2, \
'length of localCoordinates is not 2 but {}'.format(len(localCoordinates))
assert len(X) == 3, \
'length of X is not 3 but {}'.format(len(X))
assert len(X[0]) == 2, \
'length of X[0] is not 2 but {}'.format(len(X[0]))
derivatives = self._CalculateShapeFunctionDerivatives()
de, dn = derivatives
retVal = np.zeros([3,2])
J = self._CalculateJacobianGivenLocalCoordinates(X, localCoordinates)
for i in range(3):
dN = np.array([de[i], dn[i]])
retVal[i, :] = np.linalg.solve(J, dN)
return retVal
def _PerformQuadratureOnReferenceTriangle(self, psi):
''' Perform quadrature on our reference triangle
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
- psi : function
The function to perform the quadrature over.
Returns
----------
- accum
Integral of function over the reference triangle.
'''
assert callable(psi), \
'psi is not a function but is of type {}'.format(type(psi))
xi = np.array([1/6, 4/6, 1/6])
eta = np.array([1/6, 1/6, 4/6])
accum = 0
for i in range(3):
state = np.array([xi[i], eta[i]])
accum += psi(state)
accum /= 6
return accum
def _PerformQuadratureOnElement(self, phi, globalCoords):
''' Perform quadrature on a particular element.
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
- phi : function
The function to perform the quadrature over.
- globalCoords : np.array(3,2)
The global coordinates of the element to integrate over.
Returns
----------
- Integral of function over the element
'''
assert callable(phi), \
'phi is not a function but is of type {}'.format(type(phi))
assert np.shape(globalCoords) == (3,2), \
'globalCoords is not of shape (3,2) but {}'.format(np.shape(globalCoords))
psi = lambda xi_in: self._CalculateJacobianDeterminantGivenLocalCoordinates(globalCoords, xi_in)* \
phi(self._CalculateGlobalCoordinatesGivenLocalCoordinates(globalCoords, xi_in),
self._CalculateDerivativesOfShapeFunctionsInGlobalCoordinates(globalCoords, xi_in),
self._CalculateShapeFunctions(xi_in))
return self._PerformQuadratureOnReferenceTriangle(psi)
def _CalculateStiffness(self, globalCoords):
''' Calculate the stiffness matrix for a given element
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
- globalCoords : np.array(3,2)
The global coordinates of the element to calculate for.
Returns
----------
- stiffness : np.array(3,3)
'''
assert np.shape(globalCoords) == (3,2), \
'globalCoords is not of shape (3,2) but {}'.format(np.shape(globalCoords))
stiffness = np.zeros([3,3])
for a in range(3):
for b in range(3):
stiff_calc = lambda x, ds, s: ds[a,0] * ds[b,0] + ds[a,1] * ds[b,1]
stiffness[a,b] = self._PerformQuadratureOnElement(stiff_calc, globalCoords)
return stiffness
def _CalculateForce(self, globalCoords, f):
''' Calculate the force vector for a given element
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
- globalCoords : np.array(3,2)
The global coordinates of the element to calculate for.
Returns
----------
- force : np.array(3)
'''
assert callable(f), \
'f is not a function but is of type {}'.format(type(f))
assert np.shape(globalCoords) == (3,2), \
'globalCoords is not of shape (3,2) but {}'.format(np.shape(globalCoords))
force = np.zeros(3)
for b in range(3):
forceCalc = lambda x, ds, s: s[b]*f(x)
force[b] = self._PerformQuadratureOnElement(forceCalc, globalCoords)
return force
def PerformFiniteElement(self, nodes, IEN, ID, f):
''' This is the main interface function to perform finite element
analysis on the grid and function provided.
Parameters
----------
nodes : array of float
(Nnodes, 2) array containing the x, y coordinates of the nodes
IEN : array of int
(Nelements, 3) array linking element number to node number
ID : array of int
(Nnodes,) array linking node number to equation number; value is -1 if node should not appear in global
f : function
The function describing the heat in the system.
Returns
----------
- output : np.array(Nnodes)
Solution to the generated system of equations.
'''
assert type(nodes) == np.ndarray or type(nodes) == list, \
'nodes is not of type np.ndarray / list but {}'.format(type(nodes))
assert type(IEN) == np.ndarray or type(IEN) == list, \
'IEN is not of type np.ndarray / list but {}'.format(type(IEN))
assert type(ID) == np.ndarray or type(ID) == list, \
'ID is not of type np.ndarray / list but {}'.format(type(ID))
assert callable(f), \
'f is not of type function but of type {}'.format(type(f))
# Configure storage for K and F global.
Nelements = IEN.shape[0]
Nequations = np.max(ID)+1
Nnodes = nodes.shape[0]
K = np.zeros([Nequations, Nequations])
F = np.zeros(Nequations)
# Location matrix
LM = np.zeros_like(IEN.T)
for e in range(Nelements):
for a in range(3):
LM[a,e] = ID[IEN[e,a]]
for e in range(Nelements):
# Calculate local stiffness matrix
stiffnessLocal = self._CalculateStiffness(nodes[IEN[e,:],:])
# Map from local stiffness to global stiffness
for a in range(3):
A = LM[a, e]
for b in range(3):
B = LM[b,e]
if A != -1 and B != -1:
K[A, B] = K[A, B] + stiffnessLocal[a,b]
for e in range(Nelements):
# Calculate force
forceLocal = self._CalculateForce(nodes[IEN[e,:],:], f)
# Map from local force vector to global force vector.
for a in range(3):
A = LM[a, e]
if A != -1:
F[A] += forceLocal[a]
# Solve system of equations
T = np.linalg.solve(K,F)
# Apply boundary conditions to nodes marked as -1.
output = np.zeros(Nnodes)
for n in range(Nnodes):
if ID[n] >= 0:
output[n] = T[ID[n]]
return output
def _find_node_index_of_location(self, nodes, location):
"""
Given all the nodes and a location (that should be the location of *a* node), return the index of that node.
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
nodes : array of float
(Nnodes, 2) array containing the x, y coordinates of the nodes
location : array of float
(2,) array containing the x, y coordinates of location
"""
dist_to_location = np.linalg.norm(nodes - location, axis=1)
return np.argmin(dist_to_location)
def _generate_g_grid(self, side_length):
"""
Generate a 2d triangulation of the letter G. All triangles have the same size (right triangles,
short length side_length)
-----------------------------------------------------------------------
This is not an interface function and should only be called by
functions inside the FiniteElements class.
-----------------------------------------------------------------------
Parameters
----------
side_length : float
The length of each triangle. Should be 1/N for some integer N
Returns
-------
nodes : array of float
(Nnodes, 2) array containing the x, y coordinates of the nodes
IEN : array of int
(Nelements, 3) array linking element number to node number
ID : array of int
(Nnodes,) array linking node number to equation number; value is -1 if node should not appear in global arrays.
"""
x = np.arange(0, 4+0.5*side_length, side_length)
y = np.arange(0, 5+0.5*side_length, side_length)
X, Y = np.meshgrid(x,y)
potential_nodes = np.zeros((X.size,2))
potential_nodes[:,0] = X.ravel()
potential_nodes[:,1] = Y.ravel()
xp = potential_nodes[:,0]
yp = potential_nodes[:,1]
nodes_mask = np.logical_or(np.logical_and(xp>=2,np.logical_and(yp>=2,yp<=3)),
np.logical_or(np.logical_and(xp>=3,yp<=3),
np.logical_or(xp<=1,
np.logical_or(yp<=1, yp>=4))))
nodes = potential_nodes[nodes_mask, :]
ID = np.zeros(len(nodes), dtype=np.int)
n_eq = 0
for nID in range(len(nodes)):
if np.allclose(nodes[nID,0], 4):
ID[nID] = -1
else:
ID[nID] = n_eq
n_eq += 1
inv_side_length = int(1 / side_length)
Nelements_per_block = inv_side_length**2
Nelements = 2 * 14 * Nelements_per_block
IEN = np.zeros((Nelements,3), dtype=np.int)
block_corners = [[0,0], [1,0], [2,0], [3,0],
[0,1], [3,1],
[0,2], [2,2], [3,2],
[0,3],
[0,4], [1,4], [2,4], [3,4]]
current_element = 0
for block in block_corners:
for i in range(inv_side_length):
for j in range(inv_side_length):
node_locations = np.zeros((4,2))
for a in range(2):
for b in range(2):
node_locations[a+2*b,0] = block[0] + (i+a)*side_length
node_locations[a+2*b,1] = block[1] + (j+b)*side_length
index_lo_l = self._find_node_index_of_location(nodes, node_locations[0,:])
index_lo_r = self._find_node_index_of_location(nodes, node_locations[1,:])
index_hi_l = self._find_node_index_of_location(nodes, node_locations[2,:])
index_hi_r = self._find_node_index_of_location(nodes, node_locations[3,:])
IEN[current_element, :] = [index_lo_l, index_lo_r, index_hi_l]
current_element += 1
IEN[current_element, :] = [index_lo_r, index_hi_r, index_hi_l]
current_element += 1
return nodes, IEN, ID