forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ReferenceImplementation.qs
181 lines (133 loc) · 6.08 KB
/
ReferenceImplementation.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains reference solutions to all tasks.
// The tasks themselves can be found in Tasks.qs file.
// but feel free to look up the solution if you get stuck.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.Teleportation {
open Microsoft.Quantum.Preparation;
open Microsoft.Quantum.Intrinsic;
//////////////////////////////////////////////////////////////////
// Part I. Standard teleportation
//////////////////////////////////////////////////////////////////
// Task 1.1. Entangled pair
operation Entangle_Reference (qAlice : Qubit, qBob : Qubit) : Unit is Adj {
H(qAlice);
CNOT(qAlice, qBob);
}
// Task 1.2. Send the message (Alice's task)
operation SendMessage_Reference (qAlice : Qubit, qMessage : Qubit) : (Bool, Bool) {
CNOT(qMessage, qAlice);
H(qMessage);
return (M(qMessage) == One, M(qAlice) == One);
}
// Task 1.3. Reconstruct the message (Bob's task)
operation ReconstructMessage_Reference (qBob : Qubit, (b1 : Bool, b2 : Bool)) : Unit {
if (b1) {
Z(qBob);
}
if (b2) {
X(qBob);
}
}
// Task 1.4. Standard teleportation protocol
operation StandardTeleport_Reference (qAlice : Qubit, qBob : Qubit, qMessage : Qubit) : Unit {
Entangle_Reference(qAlice, qBob);
let classicalBits = SendMessage_Reference(qAlice, qMessage);
// Alice sends the classical bits to Bob.
// Bob uses these bits to transform his part of the entangled pair into |ψ⟩.
ReconstructMessage_Reference(qBob, classicalBits);
}
// Task 1.5. Prepare the message specified and send it (Alice's task)
operation PrepareAndSendMessage_Reference (qAlice : Qubit, basis : Pauli, state : Bool) : (Bool, Bool) {
use message = Qubit();
if (state) {
X(message);
}
PreparePauliEigenstate(basis, message);
let classicalBits = SendMessage_Reference(qAlice, message);
Reset(message);
return classicalBits;
}
// Task 1.6. Reconstruct the message and measure it (Bob's task)
operation ReconstructAndMeasureMessage_Reference (qBob : Qubit, (b1 : Bool, b2 : Bool), basis : Pauli) : Bool {
ReconstructMessage_Reference(qBob, (b1, b2));
return Measure([basis], [qBob]) == One;
}
//////////////////////////////////////////////////////////////////
// Part II. Teleportation using different entangled pair
//////////////////////////////////////////////////////////////////
// Task 2.1. Reconstruct the message if the entangled qubits were in the state |Φ⁻⟩ = (|00⟩ - |11⟩) / sqrt(2).
operation ReconstructMessage_PhiMinus_Reference (qBob : Qubit, (b1 : Bool, b2 : Bool)) : Unit {
// Bob can apply a Z gate to his qubit to convert the pair to |Φ⁺⟩
// and use the standard teleportation reconstruction process.
if (not b1) {
Z(qBob);
}
if (b2) {
X(qBob);
}
}
// Task 2.2. Reconstruct the message if the entangled qubits were in the state |Ψ⁺⟩ = (|01⟩ + |10⟩) / sqrt(2).
operation ReconstructMessage_PsiPlus_Reference (qBob : Qubit, (b1 : Bool, b2 : Bool)) : Unit {
// Bob can apply an X gate to his qubit to convert the pair to |Φ⁺⟩
// and use the standard teleportation reconstruction process.
if (b1) {
Z(qBob);
}
if (not b2) {
X(qBob);
}
}
// Task 2.3. Reconstruct the message if the entangled qubits were in the state |Ψ⁻⟩ = (|01⟩ - |10⟩) / sqrt(2).
operation ReconstructMessage_PsiMinus_Reference (qBob : Qubit, (b1 : Bool, b2 : Bool)) : Unit {
// Bob can apply a Z gate and an X gate to his qubit to convert the pair to |Φ⁺⟩
// and use the standard teleportation reconstruction process.
if (not b1) {
Z(qBob);
}
if (not b2) {
X(qBob);
}
}
//////////////////////////////////////////////////////////////////
// Part III. Principle of deferred measurement
//////////////////////////////////////////////////////////////////
// Task 3.1. Measurement-free teleportation.
operation MeasurementFreeTeleport_Reference (qAlice : Qubit, qBob : Qubit, qMessage : Qubit) : Unit {
// The first part of the circuit is similar to Alice's part, but without measurements.
CNOT(qMessage, qAlice);
H(qMessage);
// Classically controlled gates applied by Bob are replaced by controlled gates
Controlled Z([qMessage], qBob);
Controlled X([qAlice], qBob);
}
//////////////////////////////////////////////////////////////////
// Part IV. Teleportation with three entangled qubits
//////////////////////////////////////////////////////////////////
// Task 4.1. Entangled trio
operation EntangleThreeQubits_Reference (qAlice : Qubit, qBob : Qubit, qCharlie : Qubit) : Unit is Adj {
// Starting with |000⟩
H(qBob);
// now state is: 1/sqrt(2) (|000⟩ + |010⟩)
CNOT(qBob, qCharlie);
// state: 1/sqrt(2) (|000⟩ + |011⟩)
H(qAlice);
// state: 1/2 (|000⟩ + |011⟩ + |100⟩ + |111⟩)
CNOT(qAlice, qCharlie);
// final state: 1/2 (|000⟩ + |011⟩ + |101⟩ + |110⟩)
}
// Task 4.2. Reconstruct the message (Charlie's task)
operation ReconstructMessageWhenThreeEntangledQubits_Reference (qCharlie : Qubit, (b1 : Bool, b2 : Bool), b3 : Bool) : Unit {
if (b1) {
Z(qCharlie);
}
if (b2) {
X(qCharlie);
}
if (b3) {
X(qCharlie);
}
}
}