-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassic_hopfield.py
54 lines (39 loc) · 1.6 KB
/
classic_hopfield.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from typing import Optional
import numpy as np
import matplotlib.pyplot as plt
from datasets import load_mnist_patterns
from visualization import visualize_hopfield_network
class ClassicHopfield:
def __init__(self, patterns: np.ndarray, threshholds: Optional[np.ndarray] = None):
if threshholds is None:
threshholds = np.zeros(patterns.shape[1])
self.patterns = patterns
self.threshholds = threshholds
self.weights = self._calculate_weights()
def _calculate_weights(self) -> np.ndarray:
weights = self.patterns.T @ self.patterns # (F x N) @ (N x F) = F x F
np.fill_diagonal(weights, 0)
return weights
def __call__(self, state: np.ndarray) -> np.ndarray:
return np.sign(state @ self.weights - self.threshholds)
def energy(self, state: np.ndarray) -> float:
return -0.5 * state @ self.weights @ state + state @ self.threshholds
def plot_classic_example(
n_patterns: int = 10, output_path: Optional[str] = None
) -> tuple[plt.Figure, plt.Axes]:
# Load some samples from MNIST
patterns = load_mnist_patterns(n_patterns)
# Create a Hopfield network
hopfield = ClassicHopfield(patterns)
# Create a random initial state
state = np.random.choice([-1, 1], patterns.shape[1])
plt.ion()
f, axs = visualize_hopfield_network(
hopfield_network=hopfield,
energy_function=hopfield.energy,
initial_state=state,
output_path=output_path,
)
return f, axs
if __name__ == "__main__":
f, axs = plot_classic_example(n_patterns=2, output_path="classic_hopfield.gif")