Skip to content

santysangro/Convolutional-Variational-Autoencoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Convolutional Variational Autoencoder (VAE)

This repository contains an implementation of a Convolutional Variational Autoencoder (VAE) using PyTorch. The project trains the VAE on the CelebA dataset and generates face images.

Features

  • Convolution Variational Autoencoder implementation in PyTorch
  • Trained on CelebA dataset
  • Customizable hyperparameters for flexibility
  • Progress tracking with tqdm
  • Possible to specify parameter "attribute" in order to generate images with one of the 40 specified attributes form the dataset.

Installation

  1. Clone the repository:
    git clone https://github.com/santysangro/Convolutional-Variational-Autoencoder.git
    cd Convolutional-Variational-Autoencoder  
    pip install -r requirements.txt 
    python scripts/train.py #To train the model
    python scripts/inference.py --num-images 5 --attribute Similing #To generate images
    
    

Dataset

Download the CelebA dataset from this link and place it in the dataset/ directory.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages