Skip to content

Latest commit

 

History

History
117 lines (85 loc) · 5.25 KB

readme.md

File metadata and controls

117 lines (85 loc) · 5.25 KB

3n+1 problem proof and computer programs

Proof

For details read makarenko-alexandre-3n+1.pdf

New/different formulation

Change 1 - Instead of dividing even numbers by 2 we add 1 shifted left by the number of trailing zeros T.

Change 2 - The sequence ends when it reaches . In other words, eventually there will be only single 1 shifted left by the number of divisions by 2 we would accomplish with the regular Collatz algorithm.

Example for 11:

step old decimal old binary new binary new decimal
0 11 1011 1011 11
*3 100001 100001 *3
+1 100010 100010 +1
/2 10001 100010 nop
1 17 10001 100010 34
*3 110011 1100110 *3
+1 110100 1101000 +2
/4 1101 1101000 nop
2 13 1101 1101000 104
*3 100111 100111000 *3
+1 101000 101000000 +8
/8 101 101000000 nop
3 5 101 101000000 320
*3 1111 1111000000 *3
+1 10000 10000000000 +64
/16 1 10000000000 nop
4 1 1 10000000000 1024

Each new sequence value will be :

where is the number of trailing zeros in the value .

Reverse algorithm

Given a value we can find all possible with

by evaluating all .

Example of all values reverted from

step 0 step 1 step 2 step 3 step 4 step 5 binary
1024 10000000000
341 101010101
340 101010100
113 1110001
336 101010000
320 101000000
106 1101010
35 100011
104 1101000
34 100010
11 1011
96 1100000
256 100000000
85 1010101
84 1010100
80 1010000
26 11010
24 11000
64 1000000
21 10101
20 10100
6 110
16 10000
5 101
4 100
1 1

The backward algorithm is combinatorial where the values reverted from and never overlap.

Proof. By tending and to infinity the backward sequence will produce all integers.

Code

In src all java files are standalone programs. To compile for example ForwardCollatz.java:

$> javac ForwardCollatz.java

Forward sequence

Example: solve Collatz in new formulation for 47: fwd

Backward sequence

Example: solve reverse Collatz for 47 starting from 2^68: bwd

Benchmarks

See in bench directory.

views