-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathML5-1.py
102 lines (101 loc) · 3.36 KB
/
ML5-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# ASSIGNMENT-5
# Classify the email using the binary classification method. Email Spam detection has two states:
import pandas as pd
import numpy as np
#-----------------------------#
df= pd.read_csv('emails.csv')
#-----------------------------#
df.dtypes
#-----------------------------#
df.head()
#-----------------------------#
df.info()
#-----------------------------#
# Check for null values
df.isnull().values.any()
#-----------------------------#
df.describe()
#-----------------------------#
x = df.iloc[:,1:3001]
x.shape
x
#-----------------------------#
y = df.iloc[:,-1].values
y.shape
y
#-----------------------------#
from sklearn.model_selection import train_test_split
#-----------------------------#
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_state = 1)
x_train.shape, x_test.shape
#-----------------------------#
print("The shape of X_train is:",x_train.shape)
print("The shape of X_test is:",x_test.shape)
print("The shape of y_train is:",y_train.shape)
print("The shape of y_test is:",y_test.shape)
#-----------------------------#
# ## SUPPORT VECTOR MACHINE
from sklearn.svm import SVC
#-----------------------------#
# instantiate the model
svm = SVC(kernel='linear', C=1.0, random_state=12)
#fit the model
svm.fit(x_train, y_train)
#-----------------------------#
#predicting the target value from the model for the samples
y_test_svm = svm.predict(x_test)
#-----------------------------#
# ## KNN
from sklearn.neighbors import KNeighborsClassifier
#-----------------------------#
knn= KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2 )
knn.fit(x_train, y_train)
#-----------------------------#
#predicting the target value from the model for the samples
y_test_knn = knn.predict(x_test)
#-----------------------------#
from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay
#-----------------------------#
# ### CONFUSION MATRIX SVM
confusion_matrix_svm = confusion_matrix(y_test, y_test_svm)
print("Confusion Matrix - SVM")
print(confusion_matrix_svm)
#-----------------------------#
# ### CONFUSION MATRIX KNN
confusion_matrix_knn = confusion_matrix(y_test, y_test_knn)
print("Confusion Matrix - KNN")
print(confusion_matrix_knn)
#-----------------------------#
# ### CLASSIFICATION REPORT SVM
classification_report_svm = classification_report(y_test, y_test_svm)
print("Classification Report - SVM")
print(classification_report_svm)
#-----------------------------#
# ### CLASSIFICATION REPORT KNN
classification_report_knn = classification_report(y_test, y_test_knn)
print("Classification Report - KNN")
print(classification_report_knn)
#-----------------------------#
# ### METRICS SVM
tn, fp, fn, tp = confusion_matrix(y_test, y_test_svm).ravel()
accuracy =(tp+tn)/(tp+tn+fp+fn)
precision =(tp)/(tp+fp)
recall =(tp)/(tp+fn)
f1 =2*(( precision * recall)/( precision + recall))
print('SVM METRICS',
'\nAccuracy:\t',accuracy*100,
'\nPrecision:\t',precision*100,
'\nRecall: \t',recall*100,
'\nF1-Score:\t',f1*100)
#-----------------------------#
# ### METRICS KNN
tn, fp, fn, tp = confusion_matrix(y_test, y_test_knn).ravel()
accuracy =(tp+tn)/(tp+tn+fp+fn)
precision =(tp)/(tp+fp)
recall =(tp)/(tp+fn)
f1 =2*(( precision * recall)/( precision + recall))
print('KNN METRICS',
'\nAccuracy:\t',accuracy*100,
'\nPrecision:\t',precision*100,
'\nRecall: \t',recall*100,
'\nF1-Score:\t',f1*100)