Infinite dSprites for Disentangled Continual Learning: Separating Memory Edits from Generalization
Published at CoLLAs 2024.
Install the requirements and the package (ideally in a virtual environment):
python -m pip install -r requirements.txt
python -m pip install -e .
Here's how to use the dataset:
from torch.utils.data import DataLoader
from disco.data import InfiniteDSprites
dataset = InfiniteDSprites()
dataloader = DataLoader(dataset, batch_size=4)
batch = next(iter(dataloader))
draw_batch(batch, show=True)
For other use cases and a more detailed introduction, see the notebooks in the examples folder.
To reproduce the paper plots, see plots.sh script.
Rendering the figures requires TeX Live. To install it on macOS, use Homebrew:
brew install --cask mactex
Make sure the executables are in your PATH:
find / -name kpsewhich 2>/dev/null
Add the directory from the output to your PATH, e.g.:
export PATH=/usr/local/texlive/2023/bin/universal-darwin:$PAT
If you use this work in your research, please consider citing:
@article{dziadzio2023disentangled,
title={Disentangled Continual Learning: Separating Memory Edits from Model Updates},
author={Dziadzio, Sebastian and Y{\i}ld{\i}z, {\c{C}}a{\u{g}}atay and van de Ven, Gido M and Trzci{\'n}ski, Tomasz and Tuytelaars, Tinne and Bethge, Matthias},
journal={arXiv preprint arXiv:2312.16731},
year={2023}
}
Thanks!