-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
173 lines (129 loc) · 5.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import datetime as dt
import math
from copy import deepcopy
from os.path import join
# from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from dlib.parallel import MyDDP as DDP
from dlib.process.parseit import parse_input
from dlib.process.instantiators import get_model
from dlib.process.instantiators import get_optimizer
from dlib.utils.tools import log_device
from dlib.utils.tools import bye
from dlib.configure import constants
from dlib.learning.train_wsol import Trainer
from dlib.process.instantiators import get_loss
from dlib.process.instantiators import get_pretrainde_classifier
from dlib.utils.shared import fmsg
from dlib.utils.shared import is_cc
from dlib.utils.utils_checkpoints import find_last_checkpoint
from dlib.utils.utils_checkpoints import load_checkpoint_net
from dlib.utils.utils_checkpoints import load_checkpoint_optimizer
from dlib.utils.utils_checkpoints import load_checkpoint_lr_scheduler
from dlib.utils.utils_checkpoints import load_loss_t
import dlib.dllogger as DLLogger
def main():
args, args_dict = parse_input(eval=False)
log_device(args)
model = get_model(args)
init_iter, checkpoint = find_last_checkpoint(
join(args.outd_backup, args.save_dir_models), key=constants.CHP_CP)
current_step = init_iter
model.cuda(args.c_cudaid)
load_checkpoint_net(network=model, s_dict=checkpoint[constants.CHP_M])
if args.distributed:
dist.barrier()
model = DDP(model, device_ids=[args.c_cudaid])
best_state_dict = deepcopy(model.state_dict())
optimizer, lr_scheduler = get_optimizer(args, model)
load_checkpoint_optimizer(optimizer=optimizer,
s_dict=checkpoint[constants.CHP_O])
load_checkpoint_lr_scheduler(lr_scheduler=lr_scheduler,
s_dict=checkpoint[constants.CHP_LR])
loss = get_loss(args)
load_loss_t(loss, s_t=checkpoint[constants.CHP_T])
inter_classifier = None
if args.task in [constants.F_CL, constants.C_BOX, constants.TCAM,
constants.COLOCAM]:
chpts = {
constants.F_CL: constants.BEST_LOC,
constants.C_BOX: args.cb_pretrained_cl_ch_pt,
constants.TCAM: args.tcam_pretrained_seeder_ch_pt,
constants.COLOCAM: args.colocam_pretrained_seeder_ch_pt
}
inter_classifier = get_pretrainde_classifier(
args, pretrained_ch_pt=chpts[args.task])
inter_classifier.cuda(args.c_cudaid)
trainer: Trainer = Trainer(args=args, model=model, optimizer=optimizer,
lr_scheduler=lr_scheduler, loss=loss,
classifier=inter_classifier,
current_step=current_step)
DLLogger.log(fmsg("Start init. epoch ..."))
tr_loader = trainer.loaders[constants.TRAINSET]
train_size = int(math.ceil(
len(tr_loader.dataset) / (args.batch_size * args.num_gpus)))
current_epoch = math.floor(current_step / float(train_size))
trainer.evaluate(epoch=current_epoch, split=constants.VALIDSET)
if args.is_master:
trainer.model_selection(epoch=current_epoch, split=constants.VALIDSET)
trainer.print_performances()
trainer.report(epoch=0, split=constants.VALIDSET)
DLLogger.log(fmsg("Epoch init. epoch done."))
for epoch in range(current_epoch, trainer.args.max_epochs, 1):
if args.distributed:
dist.barrier()
zepoch = epoch + 1
DLLogger.log(fmsg(("Start epoch {} ...".format(zepoch))))
train_performance = trainer.train(split=constants.TRAINSET,
epoch=zepoch)
trainer.evaluate(zepoch, split=constants.VALIDSET)
if args.is_master:
trainer.model_selection(epoch=zepoch, split=constants.VALIDSET)
trainer.report_train(train_performance, zepoch,
split=constants.TRAINSET)
trainer.print_performances()
trainer.report(zepoch, split=constants.VALIDSET)
DLLogger.log(fmsg(("Epoch {} done.".format(zepoch))))
trainer.adjust_learning_rate()
if args.distributed:
dist.barrier()
trainer.save_best_epoch(split=constants.VALIDSET)
trainer.capture_perf_meters()
DLLogger.log(fmsg("Final epoch evaluation on test set ..."))
chpts = [constants.BEST_LOC, constants.BEST_CL]
# todo: keep only best_loc eval for tcam.
if args.dataset == constants.ILSVRC:
chpts = [constants.BEST_LOC]
for eval_checkpoint_type in chpts:
t0 = dt.datetime.now()
DLLogger.log(fmsg('EVAL TEST SET. CHECKPOINT: {}'.format(
eval_checkpoint_type)))
if eval_checkpoint_type == constants.BEST_LOC:
epoch = trainer.args.best_epoch_loc
elif eval_checkpoint_type == constants.BEST_CL:
epoch = trainer.args.best_epoch_cl
else:
raise NotImplementedError
trainer.load_checkpoint(checkpoint_type=eval_checkpoint_type)
trainer.evaluate(epoch,
split=constants.TESTSET,
checkpoint_type=eval_checkpoint_type,
fcam_argmax=False)
if args.is_master:
trainer.print_performances(checkpoint_type=eval_checkpoint_type)
trainer.report(epoch, split=constants.TESTSET,
checkpoint_type=eval_checkpoint_type)
trainer.save_performances(
epoch=epoch, checkpoint_type=eval_checkpoint_type)
trainer.switch_perf_meter_to_captured()
DLLogger.log("EVAL time TESTSET - CHECKPOINT {}: {}".format(
eval_checkpoint_type, dt.datetime.now() - t0))
if args.distributed:
dist.barrier()
if args.is_master:
trainer.save_args()
trainer.plot_perfs_meter()
bye(trainer.args)
if __name__ == '__main__':
main()