Skip to content

Latest commit

 

History

History
525 lines (404 loc) · 14.2 KB

readme.md

File metadata and controls

525 lines (404 loc) · 14.2 KB

fugologic

Fugologic is a basic implementation of a fuzzy logic system.

TL;DR

Define fuzzy values, create the rules and evaluate them.

  • Describe complex rules manually or using a builder
  • Describe simple rules using specific methods (like the fuzzy associative matrix)

For example, implement the following rules

HP/FP => Act Very low HP Low HP Medium HP High HP Very high HP
Very weak FP Retreat! Retreat! Defend Defend Defend
Weak FP Retreat! Defend Defend Attack Attack
Medium FP Retreat! Defend Attack Attack Full attack!
High FP Retreat! Defend Attack Attack Full attack!
Very high FP Defend Attack Attack Full attack! Full attack!
// Create a crisp set, fuzzy sets and a fuzzy value
// Input HP [0 ; 100]
crispHP, _ := crisp.NewSetN(0, 100, 1000)
fsHP, _ := fuzzy.NewIDSets(map[id.ID]fuzzy.SetBuilder{
  "Very low HP":  fuzzy.StepDown{A: 0, B: 20},
  "Low HP":       fuzzy.Trapezoid{A: 0, B: 20, C: 40, D: 60},
  "Medium HP":    fuzzy.Triangular{A: 40, B: 50, C: 60},
  "High HP":      fuzzy.Trapezoid{A: 40, B: 60, C: 80, D: 100},
  "Very high HP": fuzzy.StepUp{A: 80, B: 100},
})
fvHP, _ := fuzzy.NewIDVal("HP", crispHP, fsHP)

// Create other fuzzy values the same way
// * fvFP  [0 ; 100]:  "Very weak FP", "Weak FP", "Medium FP", "High FP", "Very high FP"
// * fvAct [-10 ; 10]: "Retreat!", "Defend", "Attack", "Full attack!"

// Express all rules using the "fuzzy associative matrix"
// if <HP> and <FP> then <Act>
bld := builder.Mamdani().FuzzyAssoMatrix()
_ = bld.
  Asso(fvHP, fvFP, fvAct).
  Matrix(
    []id.ID{"Very low HP", "Low HP", "Medium HP", "High HP", "Very high HP"},
    map[id.ID][]id.ID{
      "Very weak FP": {"Retreat!", "Retreat!", "Defend", "Defend", "Defend"},
      "Weak FP":      {"Retreat!", "Defend", "Defend", "Attack", "Attack"},
      "Medium FP":    {"Retreat!", "Defend", "Attack", "Attack", "Full attack!"},
      "High FP":      {"Retreat!", "Defend", "Attack", "Attack", "Full attack!"},
      "Very high FP": {"Defend", "Attack", "Attack", "Full attack!", "Full attack!"},
    },
  )

// Create an engine and evaluate it
engine, _ := bld.Engine()
result, _ := engine.Evaluate(fuzzy.DataInput{
  fvHP: 75,
  fvFP: 30,
})

// Manage output
return result[fvAct]

Getting started

For more examples, see /fugologic/example/

Define the system

Crisp values definition

Defuzzification requires a crisp interval of discrete values.

It is defined as crisp.Set (x min, x max, dx)

// Each values from 0.0 to 0.3 every 0.1 => [0.0, 0.1, 0.2, 0.3]
set, err := crisp.NewSet(0.0, 0.3, 0.1)
if err != nil{
  return err
}

It can also be defined with n values (x min, x max, n values)

// 4 values in [0.0 ; 0.3]
set, err := crisp.NewSetN(0.0, 0.3, 4)
if err != nil{
  return err
}

Membership function definition

A membership function is defined as a fuzzy.Set. Several methods are proposed, like :

method description shape
Gauss Gaussian ▁/⁀\▁
Gbell Generalized bell-shaped ▁/⁀\▁
Trapezoid Trapezoïdal ▁/▔\▁
Triangular Triangular ▁/\▁
StepUp Step up (S shape) ▁/▔
StepDown Step down (Z shape) ▔\▁
Sigmoid Sigmoïdal (S or Z shape) ▁/▔ or ▔\▁

Initialise a builder and call New to get the fuzzy.Set and check for errors

set, err := Triangular{A: 1, B: 2, C: 3}.New()
if err != nil {
  return err
}

Fuzzy values definition

Fuzzy values and fuzzy sets are defined as :

  • fuzzy.IDVal: a fuzzy value that contains,
    • an identifier id.ID
    • a crisp.Set interval of values (required for defuzzification)
    • a list of fuzzy.IDSet ; and each on contains,
      • an identifier id.ID
      • a membership method fuzzy.Set
      • its fuzzy.IDVal parent

Notes : every identifier shall be unique in a fuzzy.Engine

Define fuzzy inputs / outputs

First, create a fuzzy value and link it to a list of fuzzy sets.

Ensure that the crisp interval of the fuzzy value covers all the fuzzy sets intervals.

// Fuzzy sets "a1", "a2"
// Use the builder or create them manually
fsA, _ := fuzzy.NewIDSets(map[id.ID]fuzzy.SetBuilder{
  "a1": fuzzy.Triangular{-3, -1, 1},
  "a2": fuzzy.Trapezoid{-1, 1, 3, 5},
})

// Fuzzy value "a"
crispA, _ := crisp.NewSet(-3, 5, 0.1)
fvA, _ := fuzzy.NewIDVal("a", crispA, fsA)

// Retrieve fuzzy sets using their ids
fsA1 := fvA.Get("a1")
fsA2 := fvA.Get("a2")

// Or fetch a fuzzy set and its presence
// - fsUnknown is empty
// - ok is false
fsUnknown, ok := fvA.Fetch("unknown")

Create other inputs and outputs the same way.

Define the rules

A rule is defined with 3 components :

  • expression : connects several fuzzy sets together
  • implication : defines an implication method
  • consequence : defines several fuzzy sets as the outputs
rule = <expression> <implication> <consequence>
rule = A1 and B1    then          C1, D1

Use a rule builder

The rule builder is optional but helps creating simple rules, and then, an engine.

Use a predefined configuration, and then create a builder

cfg := builder.Mamdani() // Predefined configuration
bld := cfg.FuzzyLogic()  // Rule builder using the predefined configuration

Or create a custom configuration, and then create a builder

cfg := builder.Config{
  Optr:   fuzzy.OperatorZadeh{},
  Impl:   fuzzy.ImplicationMin,
  Agg:    fuzzy.AggregationUnion,
  Defuzz: fuzzy.DefuzzificationCentroid,
}
bld := cfg.FuzzyLogic()

Or use your configuration to created the wanted builder

bld := builder.NewFuzzyLogic(
  fuzzy.OperatorZadeh{},
  fuzzy.ImplicationMin,
  fuzzy.AggregationUnion,
  fuzzy.DefuzzificationCentroid,
)

Details of the configuration parameters

type example description
fuzzy.Operator connect several rule premises together to create an expression
OperatorZadeh Zadeh And, Or, XOr connectors
OperatorHyperbolic Hyperbolic And, Or, XOr connectors
fuzzy.Implication propagates the expression results into consequences
ImplicationMin Mamdani implication minimum
ImplicationProd Sugeno implication product
fuzzy.Aggregation merges all coherent implications
AggregationUnion union
AggregationIntersection intersection
fuzzy.Defuzzification extracts one value from the aggregated results
DefuzzificationCentroid centroïd: center of gravity
DefuzzificationBisector bisector: position under the curve where the areas on both sides are equal
DefuzzificationSmallestOfMaxs if several y maximums are found, get the one with the smallest x
DefuzzificationMiddleOfMaxs if several y maximums are found, get the point at the middle of the smallest and the largest x
DefuzzificationLargestOfMaxs if several y maximums are found, get the one with the largest x

Describe an input expression

Select the input fuzzy.IDSet and link them using a fuzzy.Operator.

Simplest case : the expression has only one premise and no connector (directly use the fuzzy set)

// A1
exp := fsA1

An expression is a flat list of several fuzzy.IDSet linked with the same fuzzy.Connector.

For example : A1 and B1 not C1.

// Using a builder
// A1 and B1 and C1
exp := bld.If(fsA1).And(fsB1).And(fsC1)

Or in a more explicit way

// Using explicit syntax
// A1 and B1 and C1
exp := fuzzy.NewExpression([]fuzzy.Premise{fsA1, fsB1, fsC1}, fuzzy.OperatorZadeh{}.And)

At last, an expression can be more complex like (A1 and B1 and C1) not-or (D1 and E1).

Note : an expression can be complemented using the Not function

// Using a builder
expABC := bld.If(fsA1).And(fsB1).And(fsC1) // A1 and B1 and C1
expDE := bld.If(fsD1).And(fsE1)            // D1 and E1
exp := expABC.Or(expDE).Not()              // (A1 and B1 and C1) not-or (D1 and E1)

Or in a more explicit way

// Using explicit syntax
expABC := fuzzy.NewExpression([]fuzzy.Premise{fsA1, fsB1, fsC1}, fuzzy.OperatorZadeh{}.And) // A1 and B1 and C1
expDE := fuzzy.NewExpression([]fuzzy.Premise{fsD1, fsE1}, fuzzy.OperatorZadeh{}.And)        // D1 and E1
exp := fuzzy.NewExpression([]fuzzy.Premise{expABC, expDE}, fuzzy.OperatorZadeh{}.Or).Not()  // (A1 and B1 and C1) not-or (D1 and E1)

Describe an implication

An implication links the input expression and the ouput consequences (using a fuzzy.Implication)

Describe an output consequence

A consequence is just a list of fuzzy.IDSet.

Write a rule

Combine several items previously seen to describe the rules.

Write a rule manually

This method can be used to easily generate rules manually. Connectors can be explicitely choosen, unlike for the first method.

Note : create a list of rules to use it afterwards.

// Using explicit syntax, the rule has to be part of a list
rules := []fuzzy.Rule{
  // A1 and B1 => C1
  fuzzy.NewRule(
    fuzzy.NewExpression([]fuzzy.Premise{fsA1, fsB1}, fuzzy.OperatorZadeh{}.And), // expression
    fuzzy.ImplicationMin,                                                        // implication
    []fuzzy.IDSet{fsC1},                                                         // consequence
  ),
  // Describe other rules the same way, for example:
  //  * A1 and B2 => C2
  //  * A2 and B1 => C1
  //  * A2 and B2 => C2
}
Write a rule using a builder

This method is useful when describing rules directly in the code (using a builder)

Note : the builder that creates a rule stores it.

// Using a builder, the rule is stored in the builder
bld := Mamdani().FuzzyLogic()
// A1 and B1 => C1
bld.If(fsA1).And(fsB1).Then(fsC1)
// Describe other rules the same way
// ...
Write rules using a fuzzy associative matrix

This method allows compact description of all rules using a fuzzy associative matrix

Notes :

  • it can only be used to express rules like if <a> and <b> then <c> in a tabular form
  • the first operand describe the columns values
  • the second operand describes the rows values
  • the last operand if the result of value of the row #i and the column #j ; an empty identifier means no rule

Eg.: express all rules using the following tabular form

  • if a1 and b1 then c1
  • if a1 and b2 then c2
  • ...
a/b => c a1 a2 a3
b1 c1 c2 c3
b2 c2 c3 c4
b3 c3 c4 c5
b4 c4 c5 c6
b5 c5 c6 c7
// Express all rules using a "fuzzy associative matrix"
bld := builder.Mamdani().FuzzyAssoMatrix()
err := bld.
  Asso(fvA, fvB, fvC).
  Matrix(
    []id.ID{"a1", "a2", "a3"},
    map[id.ID][]id.ID{
      "b1": {"c1", "c2", "c3"},
      "b2": {"c2", "c3", "c4"},
      "b3": {"c3", "c4", "c5"},
      "b4": {"c4", "c5", "c6"},
      "b5": {"c5", "c6", "c7"},
    },
  )
if err != nil {
  return err
}

Create an engine

A fuzzy.Engine evaluates a list of fuzzy.Rule, applies a fuzzy.Aggregation to get a fuzzy result, and extracts one crisp value for each output using a fuzzy.Defuzzification method.

Engine new instance

If the defined rules contains an error, the engine builder will return it.

Create an engine from the builder

// Using a builder
engine, err := bld.Engine()
if err != nil {
  return err
}

Or create an engine manually with custom methods

// Using explicit syntax
engine, err := fuzzy.NewEngine(rules, AggregationUnion, DefuzzificationCentroid)
if err != nil {
  return err
}

Engine evaluation

Then, launch the evaluation process by setting a new crisp input value for each fuzzy.IDVal of the engine.

The result contains a crisp value for each fuzzy output value defined.

// Evaluate all the rules of the engine
result, err := engine.Evaluate(fuzzy.DataInput{
  fvA: 1,
  fvB: 0.05,
})
if err != nil {
  return err
}

// result = fuzzy.DataOutput{
//   fvC: <crisp result>,
// }

Create a system

A system is an ordered list of engines. An output of an engine can be linked to the input of another engine.

System new instance

When creating a system, some contraints are checked, like:

  • all identifiers shall be unique
  • an output shall only be produced once
  • loops are forbidden : an output cannot be linked to an input of a previous engine
// Create engines
engine1, _ := fuzzy.NewEngine(rules1, AggregationUnion, DefuzzificationCentroid)
engine2, _ := fuzzy.NewEngine(rules2, AggregationUnion, DefuzzificationProd)

// Create and evaluate the system
system, err := fuzzy.NewSystem([]Engine{engine1, engine2})
if err != nil {
  return err
}

System evaluation

Then, launch the evaluation process by setting a new input value for each fuzzy.IDVal of the system.

The result contains a crisp value for each fuzzy.IDVal output value defined.

// Evaluation of the rules of each engines
result, err := system.Evaluate(fuzzy.DataInput{
  fvA: 1,
  fvB: 0.05,
})
if err != nil {
  return err
}

// result = fuzzy.DataOutput{
//   fvC: <crisp result>,
// }

Class diagram

Classes used to describe and evaluate a simple fuzzy system

classDiagram
  class Premise {
    <<interface>>
    + Evaluate()
  }
  class Expression {
    + Evaluate()
  }
  class Engine {
    + Evaluate()
  }
  class IDSet {
    + Evaluate()
  }
  class Defuzzer {
    + Defuzz()
  }
  class DataInput {
    - value()
  }
  class System {
    + Evaluate()
  }
  class Rule {
    - evaluate()
  }

  System --> "*" Engine
  DataInput --> "1" IDSet
  Defuzzer --> "1" IDSet : results

  IDSet "1" <--> "*" IDVal

  Premise "*" <-- Expression : premises
  Expression --|> Premise
  IDSet --|> Premise
  DataInput <.. Premise

  Engine --> "*" Rule : rules
  Engine --> "1" Defuzzer : defuzzer
  Engine ..> DataInput
  Engine ..> DataOutput

  Builder --> "*" Rule : rules
  Builder ..> Engine

  Rule --> "*" Premise : inputs
  Rule --> "*" IDSet : outputs
Loading