-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyze_variants.R
164 lines (142 loc) · 5.63 KB
/
analyze_variants.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env Rscript
# analyze_variants.R
# This script reads a TSV formatted file, calculates basic statistics, performs gene burden analysis with Fisher's exact test, and writes the results to an output file.
# Author: Bernt Popp
# Date: 2024-07-13
# Version Information
SCRIPT_VERSION <- "0.5.0"
SCRIPT_DATE <- "2024-07-13"
# Load necessary libraries
library(dplyr)
library(readr)
library(tidyr)
library(stats)
# Function to display usage instructions
usage <- function() {
cat("Usage:\n")
cat(" analyze_variants.R -i /path/to/input_file -o /path/to/output_file [-s stats_file] [-g] [-h] [-v]\n")
cat("Flags:\n")
cat(" -h, --help: Display this help message\n")
cat(" -v, --version: Display script version\n")
cat(" -i, --input: Specify the input file\n")
cat(" -o, --output: Specify the output file\n")
cat(" -s, --stats: Specify the statistics output file (optional)\n")
cat(" -g, --gene-burden: Perform gene burden analysis (optional)\n")
}
# Logging function with levels
log_message <- function(message, level = "INFO") {
cat(sprintf("[%s] %s\n", level, message))
}
# Function to perform gene burden analysis
perform_gene_burden_analysis <- function(data) {
data %>%
group_by(GENE) %>%
summarise(
proband_alleles = sum(proband_allele_count),
control_alleles = sum(control_allele_count),
max_proband_count = max(proband_count),
max_control_count = max(control_count),
proband_ref_alleles = sum(max_proband_count * 2 - proband_allele_count),
control_ref_alleles = sum(max_control_count * 2 - control_allele_count),
fisher_p_value = {
table <- matrix(c(proband_alleles, control_alleles, proband_ref_alleles, control_ref_alleles), nrow = 2)
fisher.test(table)$p.value
}
)
}
# Fetch command line arguments
script_args <- commandArgs(trailingOnly = TRUE)
# Initialize variables
input_file <- NULL
output_file <- NULL
stats_file <- NULL
perform_gene_burden <- FALSE
display_help <- FALSE
display_version <- FALSE
# Parse the command line arguments for flags and values
i <- 1
while (i <= length(script_args)) {
arg <- script_args[i]
switch(arg,
'-h' = {display_help <- TRUE},
'--help' = {display_help <- TRUE},
'-v' = {display_version <- TRUE},
'--version' = {display_version <- TRUE},
'-i' = {i <- i + 1; input_file <- script_args[i]},
'--input' = {i <- i + 1; input_file <- script_args[i]},
'-o' = {i <- i + 1; output_file <- script_args[i]},
'--output' = {i <- i + 1; output_file <- script_args[i]},
'-s' = {i <- i + 1; stats_file <- script_args[i]},
'--stats' = {i <- i + 1; stats_file <- script_args[i]},
'-g' = {perform_gene_burden <- TRUE},
'--gene-burden' = {perform_gene_burden <- TRUE}
)
i <- i + 1
}
# Display version if the version flag is set
if (display_version) {
cat(sprintf("analyze_variants.R version %s, Date %s\n", SCRIPT_VERSION, SCRIPT_DATE))
quit(save = "no", status = 0)
}
# Display usage if the help flag is set or no input file is provided
if (display_help || is.null(input_file) || is.null(output_file)) {
usage()
quit(save = "no", status = 0)
}
# Check input file before reading
if (!file.exists(input_file)) {
log_message(sprintf("Error reading file: %s. Ensure it exists and is readable.", input_file), "ERROR")
quit(save = "no", status = 1)
}
# Read the input file
log_message(sprintf("Reading data from %s...", input_file))
data <- read_tsv(input_file, col_types = cols())
# Check for required columns
required_columns <- c("CHROM", "POS", "REF", "ALT", "GENE", "GT", "proband_count", "proband_allele_count", "control_count", "control_allele_count")
missing_columns <- setdiff(required_columns, colnames(data))
if (length(missing_columns) > 0) {
log_message(sprintf("Missing required columns: %s", paste(missing_columns, collapse = ", ")), "ERROR")
quit(save = "no", status = 1)
}
# Calculate basic statistics
log_message("Calculating basic statistics...")
num_variants <- nrow(data)
num_samples <- length(unique(unlist(strsplit(data$GT, ";"))))
num_genes <- length(unique(data$GENE))
het_counts <- sum(grepl("0/1", data$GT, fixed = TRUE))
hom_counts <- sum(grepl("1/1", data$GT, fixed = TRUE))
variant_types <- data %>% count(EFFECT)
impact_types <- data %>% count(IMPACT)
# Print statistics
cat(sprintf("Number of variants: %d\n", num_variants))
cat(sprintf("Number of samples: %d\n", num_samples))
cat(sprintf("Number of genes: %d\n", num_genes))
cat(sprintf("Het counts: %d\n", het_counts))
cat(sprintf("Hom counts: %d\n", hom_counts))
cat("Variant types:\n")
print(variant_types)
cat("Impact types:\n")
print(impact_types)
# Perform gene burden analysis if flag is set
if (perform_gene_burden) {
log_message("Performing gene burden analysis with Fisher's exact test...")
burden_analysis <- perform_gene_burden_analysis(data)
# Write results to output file
log_message(sprintf("Writing gene burden analysis results to %s...", output_file))
write_tsv(burden_analysis, output_file)
} else {
log_message("Skipping gene burden analysis...")
}
# Optionally, write statistics to a separate file
if (!is.null(stats_file)) {
log_message(sprintf("Writing statistics to %s...", stats_file))
stats <- data.frame(
metric = c("Number of variants", "Number of samples", "Number of genes", "Het counts", "Hom counts"),
value = c(num_variants, num_samples, num_genes, het_counts, hom_counts)
)
write_tsv(stats, stats_file, col_names = FALSE)
# Add variant and impact types to the statistics file
write_tsv(variant_types, file = stats_file, append = TRUE)
write_tsv(impact_types, file = stats_file, append = TRUE)
}
log_message("Analysis complete.")