Skip to content

Text Summarization using LSTM_Attention, TextRank,PyTextRank, LexRank, Gensim and PyTeaser

Notifications You must be signed in to change notification settings

scionoftech/Text_Summarization

Repository files navigation

Text Summarization

Text summarization refers to the technique of shortening long pieces of text. The intention is to create a coherent and fluent summary having only the main points outlined in the document. Automatic text summarization is a common problem in machine learning and natural language processing (NLP).

There are broadly two different approaches that are used for text summarization:

  • Extractive Summarization
  • Abstractive Summarization

Extractive Summarization

The name gives away what this approach does. We identify the important sentences or phrases from the original text and extract only those from the text. Those extracted sentences would be our summary. The below diagram illustrates extractive summarization.

Extractive_Summarization.png

Abstractive Summarization

This is a very interesting approach. Here, we generate new sentences from the original text. This is in contrast to the extractive approach where we used only the sentences that were present. The sentences generated through abstractive summarization might not be present in the original text.

Abstractive_Summarization.png

Text Summarization is implemented with below approches,

  • LSTM,Encoder-Decodef and Attention
  • TextRank Algorithm
  • PyTextRank Text Summarization
  • LexRank Text Summarization
  • Gensim Text Summarization
  • PyTeaser Text Summarization

About

Text Summarization using LSTM_Attention, TextRank,PyTextRank, LexRank, Gensim and PyTeaser

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published