-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscraper.py
548 lines (411 loc) · 17.7 KB
/
scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import pandas as pd
import time
from datetime import date
import pickle
import requests
from bs4 import BeautifulSoup
'''sos_csv_creator needs to be run if this file is not already created'''
team_names_filepath = 'data/sos_list2018.csv'
sos_filepath = 'data/sos_list'
teams = team_list(team_names_filepath)
'''Season date boundaries'''
season2013start = date(2012,4,1)
season2013end = date(2013,3,18)
tourney2013start = date(2013,3,19)
tourney2013end = date(2013,4,8)
season2014start = date(2013,4,9)
season2014end = date(2014,3,17)
tourney2014start = date(2014,3,18)
tourney2014end = date(2014,4,7)
season2015start = date(2014,4,8)
season2015end = date(2015,3,16)
tourney2015start = date(2015,3,17)
tourney2015end = date(2015,4,6)
season2016start = date(2015,4,7)
season2016end = date(2016,3,14)
tourney2016start = date(2016,3,15)
tourney2016end = date(2016,4,4)
season2017start = date(2016,4,5)
season2017end = date(2017,3,13)
tourney2017start = date(2017,3,14)
tourney2017end = date(2017,4,3)
season2018start = date(2017,4,4)
season2018end = date(2018,3,12)
tourney2018start = date(2018,3,13)
tourney2018end = date(2018,4,2)
def school_name_transform(school_name):
school_name = school_name.lower()
school_name = school_name.replace(" & ", " ")
school_name = school_name.replace("&", "")
school_name = school_name.replace("ncaa", "")
school_name = school_name.strip()
school_name = school_name.replace(" ", "-")
school_name = school_name.replace("(", "")
school_name = school_name.replace(")", "")
school_name = school_name.replace(".", "")
school_name = school_name.replace("'", "")
if school_name == 'siu-edwardsville':
school_name = 'southern-illinois-edwardsville'
elif school_name == 'vmi':
school_name = 'virginia-military-institute'
elif school_name == 'uc-davis':
school_name = 'california-davis'
elif school_name == 'uc-irvine':
school_name = 'california-irvine'
elif school_name == 'uc-riverside':
school_name = 'california-riverside'
elif school_name == 'uc-santa-barbara':
school_name = 'california-santa-barbara'
elif school_name == 'university-of-california':
school_name = 'california'
elif school_name == 'louisiana':
school_name = 'louisiana-lafayette'
elif school_name == 'texas-rio-grande-valley':
school_name = 'texas-pan-american'
return school_name
def sos_csv_creator(seasons):
'''
Inputs:
team = team (formatted as in url)
season = season year
Output: DataFrame of all games
'''
sos_df = pd.DataFrame()
for season in seasons:
url = 'https://www.sports-reference.com/cbb/seasons/{}-school-stats.html#basic_school_stats::none'.format(season)
'''Read season school stats'''
df = pd.read_html(url)[0]
'''Transform'''
'''Remove double Headers'''
dub_header = df.columns.tolist()
cols = [col[1].lower() for col in dub_header]
df.columns = cols
'''Pick needed columns'''
df = df[['school', 'sos']]
'''Add school-format column'''
df['school-format'] = df['school']
'''Add season column'''
df['season'] = season
'''Update School Names'''
df['school-format'] = df['school-format'].apply(school_name_transform)
'''Remove divider rows'''
df = df[df['school'] != 'Overall']
df = df[df['school'] != 'School']
df.reset_index(inplace=True, level=None)
df = df.drop(['index'], axis=1)
'''Transform to dict'''
df.to_csv('scraped_data/sos_list{}.csv'.format(season))
time.sleep(15)
def team_list(filepath):
'''
Create dictionary of school names and formatted school names for mapping
'''
team_names = pd.read_csv(filepath)
school_list = team_names['school-format'].tolist()
return school_list
def teams_dict(filepath):
'''
Create dictionary of school names and formatted school names for mapping
'''
team_names = pd.read_csv(filepath)
team_names = team_names[['school', 'school-format']]
team_dict = {}
schools = team_names['school'].tolist()
schools_format = team_names['school-format'].tolist()
for school, schform in zip(schools, schools_format):
team_dict[school] = schform
return team_dict
def sos_dict_creator(filepath, season):
'''
Create dictionary of school names and strength of schedule for mapping
'''
filepath = filepath + str(season) + '.csv'
team_sos = pd.read_csv(filepath)
team_sos = team_sos[['school-format', 'sos']]
sos_dict = {}
schools = team_sos['school-format'].tolist()
sos = team_sos['sos'].tolist()
for school, sos in zip(schools, sos):
sos_dict[school] = sos
return sos_dict
def add_game_type(row):
'''
Create Column for tourney games
'''
if row['just_date'] >= tourney2014start and row['just_date'] <= tourney2014end:
row['GameType'] = 'tourney2014'
elif row['just_date'] >= season2014start and row['just_date'] <= season2014end:
row['GameType'] = 'season2014'
elif row['just_date'] >= tourney2015start and row['just_date'] <= tourney2015end:
row['GameType'] = 'tourney2015'
elif row['just_date'] >= season2015start and row['just_date'] <= season2015end:
row['GameType'] = 'season2015'
elif row['just_date'] >= tourney2016start and row['just_date'] <= tourney2016end:
row['GameType'] = 'tourney2016'
elif row['just_date'] >= season2016start and row['just_date'] <= season2016end:
row['GameType'] = 'season2016'
elif row['just_date'] >= tourney2017start and row['just_date'] <= tourney2017end:
row['GameType'] = 'tourney2017'
elif row['just_date'] >= season2017start and row['just_date'] <= season2017end:
row['GameType'] = 'season2017'
elif row['just_date'] >= tourney2018start and row['just_date'] <= tourney2018end:
row['GameType'] = 'tourney2018'
elif row['just_date'] >= season2018start and row['just_date'] <= season2018end:
row['GameType'] = 'season2018'
else:
row['GameType'] = 'season'
return row
def lag_columns(df, cols_to_shift):
'''
Input: DataFrame
Output: DataFrame with stats lagged so matchup stats included in matchup stats rolling average
'''
for col in cols_to_shift:
new_col = '{}_shifted'.format(col)
df[new_col] = df[col].shift(1)
df = df.drop(cols_to_shift, axis=1)
column_names = df.columns.tolist()
new_column_names = [col.replace('_shifted', '') for col in column_names]
df.columns = new_column_names
df = df.dropna()
return df
def gamelog_stat_transform(df, team, sos_source, window=5, lag=True):
'''
INPUTs:
df = dataframe created from html pull
team to add team column
OUTPUT: DataFrame of all games with clean and transformed data
'''
'''remove oppenent columns'''
df = df.iloc[:, 0:23]
'''Remove Double Column headers'''
dubcols = df.columns.tolist()
cols = [col[1] for col in dubcols]
df.columns = cols
'''Rename Columns'''
newcols = ['G', 'Date', 'Blank', 'Opp', 'W', 'Pts', 'PtsA', 'FG', 'FGA',
'FG%', '3P', '3PA', '3P%', 'FT', 'FTA', 'FT%', 'ORB', 'RB',
'AST', 'STL', 'BLK', 'TO', 'PF']
df.columns = newcols
'''Remove divider rows'''
df = df[(df['Date'] != 'School') & (df['Date'] != 'Date')]
'''reformat Opponent team name column strings'''
df['Opp'] = df['Opp'].map(teams_dict(team_names_filepath))
# df['Opp'] = df['Opp'].apply(school_name_transform)
'''Only take the first charcter in W field then map to 0's and 1's.
(Ties and overtime have excess characters)'''
df['W'] = df['W'].astype(str).str[0]
df['W'] = df['W'].map({'W': 1, 'L': 0})
'''Create win precentage and rolling average Features'''
# pdb.set_trace()
df['Ws'] = df['W'].cumsum(axis=0)
df['Wp'] = df['Ws'].astype(int) / df['G'].astype(int)
df['ppg'] = df['Pts'].rolling(window=window,center=False).mean()
df['pApg'] = df['PtsA'].rolling(window=window,center=False).mean()
df['FGp'] = df['FG%'].rolling(window=window,center=False).mean()
df['3Pp'] = df['3P%'].rolling(window=window,center=False).mean()
df['FTp'] = df['FT%'].rolling(window=window,center=False).mean()
df['ORBpg'] = df['ORB'].rolling(window=window,center=False).mean()
df['RBpg'] = df['RB'].rolling(window=window,center=False).mean()
df['ASTpg'] = df['AST'].rolling(window=window,center=False).mean()
df['STLpg'] = df['STL'].rolling(window=window,center=False).mean()
df['BLKpg'] = df['BLK'].rolling(window=window,center=False).mean()
df['TOpg'] = df['TO'].rolling(window=window,center=False).mean()
df['PFpg'] = df['PF'].rolling(window=window,center=False).mean()
'''Remove columns after rolling ave calcs'''
df = df.drop(['G', 'Blank', 'Pts', 'PtsA', 'FG', 'FGA', 'FG%',
'3P', '3PA', '3P%', 'FT', 'FTA', 'FT%', 'ORB', 'RB',
'AST', 'STL', 'BLK', 'TO', 'PF'], axis=1)
'''Drop NaN rows before rolling averages can be calc'd'''
df = df.dropna()
'''Add Team Column'''
df['Tm'] = team
'''Add SOS columns'''
df['sos'] = df['Tm'].map(sos_source)
'''Add datetime formatted date without time of day (i.e. just the date)'''
df['just_date'] = pd.to_datetime(df['Date']).dt.date
df = df.apply(add_game_type, axis=1)
df = df.drop(['just_date'], axis=1)
cols_to_shift = ['Ws', 'Wp','ppg', 'pApg', 'FGp', '3Pp', 'FTp',
'ORBpg', 'RBpg', 'ASTpg', 'STLpg', 'BLKpg', 'TOpg', 'PFpg', 'Tm']
if lag:
df = lag_columns(df, cols_to_shift)
else:
pass
return df
def gamelog_scraper(teams, seasons, window=5, lag=True):
'''
Inputs:
team = team (formatted as in url)
season = season year
Output: DataFrame of all gamelogs for teams over all years
'''
gamelogs_df = pd.DataFrame()
for season in seasons:
sos_dict = sos_dict_creator(sos_filepath, season)
for team in teams:
'''Print for progress update'''
print('gamelog_scraper, team: {}, season: {}, window: {}'.format(team, season, window))
'''URL for data pull'''
url = 'https://www.sports-reference.com/cbb/schools/{}/{}-gamelogs.html#sgl-basic::none'.format(team, season)
'''Read team gamelog'''
df = pd.read_html(url)[0]
'''Transform stats'''
df = gamelog_stat_transform(df, team, sos_dict, window, lag)
'''Add df to games_df'''
gamelogs_df = gamelogs_df.append(df, ignore_index=True)
time.sleep(30)
gamelogs_df.to_pickle('scraped_data/gamelog_data_{}_game_rolling.pkl'.format(window))
def season_final_stats_scraper(teams, season, window=5, lag=False):
'''
Inputs:
team = team (formatted as in url)
season = season year
Output: DataFrame of final stats for each team before tourney
'''
season_final_stats = pd.DataFrame()
sos_dict = sos_dict_creator(sos_filepath, season)
for team in teams:
'''Print for progress update'''
print('season_final_stats_scraper, team: {}, season: {}, window: {}'.format(team, season, window))
'''URL for data pull'''
url = 'https://www.sports-reference.com/cbb/schools/{}/{}-gamelogs.html#sgl-basic::none'.format(team, season)
'''Read team gamelog'''
df = pd.read_html(url)[0]
'''Transform tats'''
df = gamelog_stat_transform(df, team, sos_dict, window, lag)
'''Filter out tourney games'''
cond = (df['GameType'] == 'season{}'.format(season))
'''Add final stats for team to df'''
season_final_stats = season_final_stats.append(df[cond].iloc[-1], ignore_index=True)
season_final_stats.to_pickle('data/season{}_final_stats_{}_game_rolling.pkl'.format(season, window))
def roster_scraper(teams, seasons):
'''
Inputs:
team = team (formatted as in url)
season = season year
Output: DataFrame of all games
'''
roster_df = pd.DataFrame()
for season in seasons:
for team in teams:
'''Print for progress update'''
print('roster_scraper, team: {}, season: {}'.format(team, season))
'''URL for data pull'''
url = 'https://www.sports-reference.com/cbb/schools/{}/{}.html#roster::none'.format(team, season)
'''Read team gamelog'''
df = pd.read_html(url)[0]
'''Drop Uneeded cols'''
df = df.iloc[:, 0:5]
df = df.drop(['#'], axis=1)
# '''Drop NaNs cols'''
# df = df.dropna(axis=0, how='any')
'''Map Class to numeric values'''
df['Class'] = df['Class'].map({'FR': 1, 'SO': 2, 'JR': 3, 'SR': 4})
'''Add Team col'''
df['Team'] = team
'''Add Season col'''
df['Season'] = season
'''Add df to games_df'''
roster_df = roster_df.append(df, ignore_index=True)
time.sleep(30)
roster_df.to_pickle('scraped_data/roster_data.pkl')
def player_per100_scraper(teams, seasons):
'''
Inputs:
team = team (formatted as in url)
season = season year
Output: DataFrame of all games
'''
player_per100_df = pd.DataFrame()
for season in seasons:
for team in teams:
'''Print for progress update'''
print('per100_scraper, team: {}, season: {}'.format(team, season))
'''URL for data pull'''
url = 'https://www.sports-reference.com/cbb/schools/{}/{}.html#per_poss::none'.format(team, season)
# Extract html from player page
req = requests.get(url).text
# Create soup object form html
soup = BeautifulSoup(req, 'html.parser')
# Extract placeholder classes
placeholders = soup.find_all('div', {'class': 'placeholder'})
for x in placeholders:
# Get elements after placeholder and combine into one string
comment = ''.join(x.next_siblings)
# Parse comment back into soup object
soup_comment = BeautifulSoup(comment, 'html.parser')
# Extract correct table from soup object using 'id' attribute
tables = soup_comment.find_all('table', attrs={"id":"per_poss"})
# Iterate tables
for tag in tables:
# Turn table from html to pandas DataFrame
df = pd.read_html(tag.prettify())[0]
# Extract a player's stats from their most recent college season
table = df.iloc[:, :]
# Add Team Column
table['Team'] = team
table['Season'] = season
# Add individual player stats to full per_poss DataFrame
player_per100_df = player_per100_df.append(table).reset_index()
# Filter out irrelevant columns
player_per100_df = player_per100_df[['Player', 'G', 'GS', 'MP',
'FG', 'FGA', 'FG%', '2P', '2PA', '2P%', '3P', '3PA', '3P%', 'FT',
'FTA', 'FT%', 'TRB', 'AST', 'STL', 'BLK', 'TOV', 'PF', 'PTS',
'ORtg', 'DRtg', 'Team', 'Season']]
time.sleep(30)
player_per100_df.to_pickle('scraped_data/player_per100_data.pkl')
def player_roster_merger(player_pkl, roster_pkl):
'''
Input: 2 pickled dataframes with different player data
Output: Saves new merged dateframe to pickle file
'''
'''Read in data'''
player_df = pd.read_pickle(player_pkl)
roster_df = pd.read_pickle(roster_pkl)
'''Drop NaN rows and reserve players'''
roster_df = roster_df.dropna(axis=0, how='any')
'''Gen unique IDs for pending merge'''
player_df = player_df.apply(player_unique_id, axis=1)
roster_df = roster_df.apply(player_unique_id, axis=1)
'''Drop unneeded columns'''
roster_df = roster_df.drop(['Player', 'Team', 'Season'], axis=1)
'''Convert Height to interger of inches'''
roster_df = roster_df.apply(height_in, axis=1)
roster_df = roster_df.drop(['Hf', 'Hi'], axis=1)
'''Merge dataframes'''
df = player_df.merge(roster_df, on='ID', how='left')
'''Drop ID column'''
df = df.drop(['ID'], axis=1)
'''Map Position'''
df = map_pos(df)
df.to_pickle('scraped_data/player_stats.pkl')
def map_pos(df):
pos_dict = {'G': 'G', 'PG': 'G', 'SG': 'G', 'F': 'F', 'SF': 'F', 'PF': 'F', 'C': 'C'}
df['Pos'] = df['Pos'].map(pos_dict)
return df
def player_unique_id(row):
row['ID'] = ",".join([row['Player'], row['Team'], str(row['Season'])])
return row
def height_in(row):
row['Hf'] = int(row['Height'][0])
row['Hi'] = int(row['Height'][1:].replace("-", ""))
row['Height'] = row['Hf'] * 12 + row['Hi']
return row
if __name__ == '__main__':
seasons = [2014, 2015, 2016, 2017, 2018]
windows = [2, 3, 4, 5, 6, 7]
'''Get strength of schedule and team list data'''
# sos_csv_creator(seasons)
'''Get full season gamelog data for all teams over all seasons'''
for window in windows:
gamelog_scraper(teams, seasons, window=window, lag=True)
'''Get final stats gamelog data for all teams over all seasons'''
season_final_stats_scraper(teams, 2017, window=5, lag=False)
season_final_stats_scraper(teams, 2018, window=5, lag=False)
'''Get roster data for all teams over all seasons'''
# roster_scraper(teams, seasons)
'''Get player per100 possessions data for all teams over all seasons'''
# player_per100_scraper(teams, seasons)
'''Merge Roster data with player per 100 stats'''
# player_roster_merger('scraped_data/player_per100_data.pkl', 'scraped_data/roster_data.pkl')