forked from ccsb-scripps/AutoDock-GPU
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgetparameters.cpp
950 lines (810 loc) · 30.3 KB
/
getparameters.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/*
AutoDock-GPU, an OpenCL implementation of AutoDock 4.2 running a Lamarckian Genetic Algorithm
Copyright (C) 2017 TU Darmstadt, Embedded Systems and Applications Group, Germany. All rights reserved.
For some of the code, Copyright (C) 2019 Computational Structural Biology Center, the Scripps Research Institute.
AutoDock is a Trade Mark of the Scripps Research Institute.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "getparameters.h"
int get_filenames_and_ADcoeffs(const int* argc,
char** argv,
Dockpars* mypars)
//The function fills the file name and coeffs fields of mypars parameter
//according to the proper command line arguments.
{
int i;
int ffile_given, lfile_given;
long tempint;
//AutoDock 4 free energy coefficients
const double coeff_elec_scale_factor = 332.06363;
//this model assumes the BOUND conformation is the SAME as the UNBOUND, default in AD4.2
const AD4_free_energy_coeffs coeffs_bound = {0.1662,
0.1209,
coeff_elec_scale_factor*0.1406,
0.1322,
0.2983};
//this model assumes the unbound conformation is EXTENDED, default if AD4.0
const AD4_free_energy_coeffs coeffs_extended = {0.1560,
0.0974,
coeff_elec_scale_factor*0.1465,
0.1159,
0.2744};
//this model assumes the unbound conformation is COMPACT
const AD4_free_energy_coeffs coeffs_compact = {0.1641,
0.0531,
coeff_elec_scale_factor*0.1272,
0.0603,
0.2272};
mypars->coeffs = coeffs_bound; //default coeffs
mypars->unbound_model = 0;
ffile_given = 0;
lfile_given = 0;
for (i=1; i<(*argc)-1; i++)
{
//Argument: grid parameter file name.
if (strcmp("-ffile", argv[i]) == 0)
{
ffile_given = 1;
strcpy(mypars->fldfile, argv[i+1]);
}
//Argument: ligand pdbqt file name
if (strcmp("-lfile", argv[i]) == 0)
{
lfile_given = 1;
strcpy(mypars->ligandfile, argv[i+1]);
}
//Argument: unbound model to be used.
//0 means the bound, 1 means the extended, 2 means the compact ...
//model's free energy coefficients will be used during docking.
if (strcmp("-ubmod", argv[i]) == 0)
{
sscanf(argv[i+1], "%ld", &tempint);
if (tempint == 0)
{
mypars->coeffs = coeffs_bound;
mypars->unbound_model = 0;
}
else
if (tempint == 1)
{
mypars->coeffs = coeffs_extended;
mypars->unbound_model = 1;
}
else
{
mypars->coeffs = coeffs_compact;
mypars->unbound_model = 2;
}
}
}
if (ffile_given == 0)
{
printf("Error: grid fld file was not defined. Use -ffile argument!\n");
return 1;
}
if (lfile_given == 0)
{
printf("Error: ligand pdbqt file was not defined. Use -lfile argument!\n");
return 1;
}
return 0;
}
void get_commandpars(const int* argc,
char** argv,
double* spacing,
Dockpars* mypars)
//The function processes the command line arguments given with the argc and argv parameters,
//and fills the proper fields of mypars according to that. If a parameter was not defined
//in the command line, the default value will be assigned. The mypars' fields will contain
//the data in the same format as it is required for writing it to algorithm defined registers.
{
int i;
long tempint;
float tempfloat;
int arg_recognized;
// ------------------------------------------
//default values
mypars->num_of_energy_evals = 2500000;
mypars->num_of_generations = 27000;
mypars->nev_provided = false;
mypars->use_heuristics = false; // Flag if we want to use Diogo's heuristics
mypars->abs_max_dmov = 6.0/(*spacing); // +/-6A
mypars->abs_max_dang = 90; // +/- 90°
mypars->mutation_rate = 2; // 2%
mypars->crossover_rate = 80; // 80%
mypars->lsearch_rate = 80; // 80%
// unsigned long num_of_ls
strcpy(mypars->ls_method, "sw"); // "sw": Solis-Wets,
// "sd": Steepest-Descent
// "fire": FIRE, https://www.math.uni-bielefeld.de/~gaehler/papers/fire.pdf
// "ad": ADADELTA, https://arxiv.org/abs/1212.5701
mypars->smooth = 0.5f;
mypars->tournament_rate = 60; // 60%
mypars->rho_lower_bound = 0.01; // 0.01
mypars->base_dmov_mul_sqrt3 = 2.0/(*spacing)*sqrt(3.0); // 2 A
mypars->base_dang_mul_sqrt3 = 75.0*sqrt(3.0); // 75°
mypars->cons_limit = 4; // 4
mypars->max_num_of_iters = 300;
mypars->pop_size = 150;
mypars->initpop_gen_or_loadfile = 0;
mypars->gen_pdbs = 0;
// char fldfile [128]
// char ligandfile [128]
// float ref_ori_angles [3]
mypars->devnum = 0;
mypars->autostop = 0;
mypars->stopstd = 0.15;
mypars->num_of_runs = 1;
mypars->reflig_en_reqired = 0;
// char unbound_model
// AD4_free_energy_coeffs coeffs
mypars->handle_symmetry = 1;
mypars->gen_finalpop = 0;
mypars->gen_best = 0;
strcpy(mypars->resname, "docking");
mypars->qasp = 0.01097f;
mypars->rmsd_tolerance = 2.0; //2 Angstroem
strcpy(mypars->xrayligandfile, mypars->ligandfile); // By default xray-ligand file is the same as the randomized input ligand
mypars->given_xrayligandfile = false; // That is, not given (explicitly by the user)
// ------------------------------------------
//overwriting values which were defined as a command line argument
for (i=1; i<(*argc)-1; i+=2)
{
arg_recognized = 0;
//Argument: number of energy evaluations. Must be a positive integer.
if (strcmp("-nev", argv[i]) == 0)
{
arg_recognized = 1;
sscanf(argv[i+1], "%ld", &tempint);
if ((tempint > 0) && (tempint < 260000000)){
mypars->num_of_energy_evals = (unsigned long) tempint;
mypars->nev_provided = true;
} else
printf("Warning: value of -nev argument ignored. Value must be between 0 and 260000000.\n");
}
//Argument: number of generations. Must be a positive integer.
if (strcmp("-ngen", argv[i]) == 0)
{
arg_recognized = 1;
sscanf(argv[i+1], "%ld", &tempint);
if ((tempint > 0) && (tempint < 16250000))
mypars->num_of_generations = (unsigned long) tempint;
else
printf("Warning: value of -ngen argument ignored. Value must be between 0 and 16250000.\n");
}
// ----------------------------------
//Argument: Use Heuristics for number of evaluations (can be overwritten with -nev)
if (strcmp("-heuristics", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if (tempint == 0)
mypars->use_heuristics = false;
else
mypars->use_heuristics = true;
}
// ----------------------------------
//Argument: maximal delta movement during mutation. Must be an integer between 1 and 16.
//N means that the maximal delta movement will be +/- 2^(N-10)*grid spacing angström.
if (strcmp("-dmov", argv[i]) == 0)
{
arg_recognized = 1;
sscanf(argv[i+1], "%f", &tempfloat);
if ((tempfloat > 0) && (tempfloat < 10))
mypars->abs_max_dmov = tempfloat/(*spacing);
else
printf("Warning: value of -dmov argument ignored. Value must be a float between 0 and 10.\n");
}
//Argument: maximal delta angle during mutation. Must be an integer between 1 and 17.
//N means that the maximal delta angle will be +/- 2^(N-8)*180/512 degrees.
if (strcmp("-dang", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
if ((tempfloat > 0) && (tempfloat < 180))
mypars->abs_max_dang = tempfloat;
else
printf("Warning: value of -dang argument ignored. Value must be a float between 0 and 180.\n");
}
//Argument: mutation rate. Must be a float between 0 and 100.
//Means the rate of mutations (cca) in percent.
if (strcmp("-mrat", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
if ((tempfloat >= 0.0) && (tempfloat < 100.0))
mypars->mutation_rate = tempfloat;
else
printf("Warning: value of -mrat argument ignored. Value must be a float between 0 and 100.\n");
}
//Argument: crossover rate. Must be a float between 0 and 100.
//Means the rate of crossovers (cca) in percent.
if (strcmp("-crat", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
if ((tempfloat >= 0.0) && (tempfloat <= 100.0))
mypars->crossover_rate = tempfloat;
else
printf("Warning: value of -crat argument ignored. Value must be a float between 0 and 100.\n");
}
//Argument: local search rate. Must be a float between 0 and 100.
//Means the rate of local search (cca) in percent.
if (strcmp("-lsrat", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
/*
if ((tempfloat >= 0.0) && (tempfloat < 100.0))
*/
if ((tempfloat >= 0.0) && (tempfloat <= 100.0))
mypars->lsearch_rate = tempfloat;
else
printf("Warning: value of -lrat argument ignored. Value must be a float between 0 and 100.\n");
}
// ---------------------------------
// MISSING: unsigned long num_of_ls
// ---------------------------------
// Smoothed pairwise potentials
if (strcmp("-smooth", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
// smooth is measured in Angstrom
if ((tempfloat >= 0.0f) && (tempfloat <= 0.5f))
mypars->smooth = tempfloat;
else
printf("Warning: value of -smooth argument ignored. Value must be a float between 0 and 0.5.\n");
}
//Argument: local search method:
// "sw": Solis-Wets
// "sd": Steepest-Descent
// "fire": FIRE
// "ad": ADADELTA
if (strcmp("-lsmet", argv [i]) == 0)
{
arg_recognized = 1;
char temp[128];
strcpy(temp, argv [i+1]);
if (strcmp(temp, "sw") == 0) {
strcpy(mypars->ls_method, temp);
//mypars->max_num_of_iters = 300;
}
else if (strcmp(temp, "sd") == 0) {
strcpy(mypars->ls_method, temp);
//mypars->max_num_of_iters = 30;
}
else if (strcmp(temp, "fire") == 0) {
strcpy(mypars->ls_method, temp);
//mypars->max_num_of_iters = 30;
}
else if (strcmp(temp, "ad") == 0) {
strcpy(mypars->ls_method, temp);
//mypars->max_num_of_iters = 30;
}
else {
printf("Warning: value of -lsmet argument ignored. Value must be a valid string: \"sw\", \"sd\", \"fire\", \"ad\".\n");
}
}
//Argument: tournament rate. Must be a float between 50 and 100.
//Means the probability that the better entity wins the tournament round during selectin
if (strcmp("-trat", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
if ((tempfloat >= /*5*/0.0) && (tempfloat <= 100.0))
mypars->tournament_rate = tempfloat;
else
printf("Warning: value of -trat argument ignored. Value must be a float between 0 and 100.\n");
}
//Argument: rho lower bound. Must be a float between 0 and 1.
//Means the lower bound of the rho parameter (possible stop condition for local search).
if (strcmp("-rholb", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
if ((tempfloat >= 0.0) && (tempfloat < 1.0))
mypars->rho_lower_bound = tempfloat;
else
printf("Warning: value of -rholb argument ignored. Value must be a float between 0 and 1.\n");
}
//Argument: local search delta movement. Must be a float between 0 and grid spacing*64 A.
//Means the spread of unifily distributed delta movement of local search.
if (strcmp("-lsmov", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
if ((tempfloat > 0.0) && (tempfloat < (*spacing)*64/sqrt(3.0)))
mypars->base_dmov_mul_sqrt3 = tempfloat/(*spacing)*sqrt(3.0);
else
printf("Warning: value of -lsmov argument ignored. Value must be a float between 0 and %lf.\n", 64*(*spacing));
}
//Argument: local search delta angle. Must be a float between 0 and 103°.
//Means the spread of unifily distributed delta angle of local search.
if (strcmp("-lsang", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
if ((tempfloat > 0.0) && (tempfloat < 103.0))
mypars->base_dang_mul_sqrt3 = tempfloat*sqrt(3.0);
else
printf("Warning: value of -lsang argument ignored. Value must be a float between 0 and 103.\n");
}
//Argument: consecutive success/failure limit. Must be an integer between 1 and 255.
//Means the number of consecutive successes/failures after which value of rho have to be doubled/halved.
if (strcmp("-cslim", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if ((tempint > 0) && (tempint < 256))
mypars->cons_limit = (unsigned long) (tempint);
else
printf("Warning: value of -cslim argument ignored. Value must be an integer between 1 and 255.\n");
}
//Argument: maximal number of iterations for local search. Must be an integer between 1 and 262143.
//Means the number of iterations after which the local search algorithm has to terminate.
if (strcmp("-lsit", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if ((tempint > 0) && (tempint < 262144))
mypars->max_num_of_iters = (unsigned long) tempint;
else
printf("Warning: value of -lsit argument ignored. Value must be an integer between 1 and 262143.\n");
}
//Argument: size of population. Must be an integer between 32 and CPU_MAX_POP_SIZE.
//Means the size of the population in the genetic algorithm.
if (strcmp("-psize", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if ((tempint >= 2) && (tempint <= MAX_POPSIZE))
mypars->pop_size = (unsigned long) (tempint);
else
printf("Warning: value of -psize argument ignored. Value must be an integer between 2 and %d.\n", MAX_POPSIZE);
}
//Argument: load initial population from file instead of generating one.
//If the value is zero, the initial population will be generated randomly, otherwise it will be loaded from a file.
if (strcmp("-pload", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if (tempint == 0)
mypars->initpop_gen_or_loadfile = 0;
else
mypars->initpop_gen_or_loadfile = 1;
}
//Argument: number of pdb files to be generated.
//The files will include the best docking poses from the final population.
if (strcmp("-npdb", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if ((tempint < 0) || (tempint > MAX_POPSIZE))
printf("Warning: value of -npdb argument ignored. Value must be an integer between 0 and %d.\n", MAX_POPSIZE);
else
mypars->gen_pdbs = tempint;
}
// ---------------------------------
// MISSING: char fldfile [128]
// UPDATED in : get_filenames_and_ADcoeffs()
// ---------------------------------
//Argument: name of grid parameter file.
if (strcmp("-ffile", argv [i]) == 0)
arg_recognized = 1;
// ---------------------------------
// MISSING: char ligandfile [128]
// UPDATED in : get_filenames_and_ADcoeffs()
// ---------------------------------
//Argument: name of ligand pdbqt file
if (strcmp("-lfile", argv [i]) == 0)
arg_recognized = 1;
// ---------------------------------
// MISSING: float ref_ori_angles [3]
// UPDATED in : gen_initpop_and_reflig()
// ---------------------------------
// ----------------------------------
//Argument: OpenCL device number to use
if (strcmp("-devnum", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%lu", &tempint);
if ((tempint >= 1) && (tempint <= 256))
mypars->devnum = (unsigned long) tempint-1;
else
printf("Warning: value of -devnum argument ignored. Value must be an integer between 1 and 256.\n");
}
// ----------------------------------
// ----------------------------------
//Argument: Multiple CG-G0 maps or not
// - has already been tested for in
// main.cpp, as it's needed at grid
// creation time not after (now)
if (strcmp("-cgmaps", argv [i]) == 0)
{
arg_recognized = 1; // stub to not complain about an unknown parameter
}
// ----------------------------------
// ----------------------------------
//Argument: Automatic stopping criterion (1) or not (0)
if (strcmp("-autostop", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if (tempint == 0)
mypars->autostop = 0;
else
mypars->autostop = 1;
}
// ----------------------------------
// ----------------------------------
//Argument: Stopping criterion standard deviation.. Must be a float between 0.01 and 2.0;
//Means the energy standard deviation of the best candidates after which to stop evaluation when autostop is 1..
if (strcmp("-stopstd", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
if ((tempfloat >= 0.01) && (tempfloat < 2.0))
mypars->stopstd = tempfloat;
else
printf("Warning: value of -stopstd argument ignored. Value must be a float between 0.01 and 2.0.\n");
}
// ----------------------------------
//Argument: number of runs. Must be an integer between 1 and 1000.
//Means the number of required runs
if (strcmp("-nrun", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if ((tempint >= 1) && (tempint <= MAX_NUM_OF_RUNS))
mypars->num_of_runs = (int) tempint;
else
printf("Warning: value of -nrun argument ignored. Value must be an integer between 1 and %d.\n", MAX_NUM_OF_RUNS);
}
//Argument: energies of reference ligand required.
//If the value is not zero, energy values of the reference ligand is required.
if (strcmp("-rlige", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if (tempint == 0)
mypars->reflig_en_reqired = 0;
else
mypars->reflig_en_reqired = 1;
}
// ---------------------------------
// MISSING: char unbound_model
// UPDATED in : get_filenames_and_ADcoeffs()
// ---------------------------------
//Argument: unbound model to be used.
if (strcmp("-ubmod", argv [i]) == 0)
arg_recognized = 1;
// ---------------------------------
// MISSING: AD4_free_energy_coeffs coeffs
// UPDATED in : get_filenames_and_ADcoeffs()
// ---------------------------------
//Argument: handle molecular symmetry during rmsd calculation
//If the value is not zero, molecular syymetry will be taken into account during rmsd calculation and clustering.
if (strcmp("-hsym", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if (tempint == 0)
mypars->handle_symmetry = 0;
else
mypars->handle_symmetry = 1;
}
//Argument: generate final population result files.
//If the value is zero, result files containing the final populations won't be generatied, otherwise they will.
if (strcmp("-gfpop", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if (tempint == 0)
mypars->gen_finalpop = 0;
else
mypars->gen_finalpop = 1;
}
//Argument: generate best.pdbqt
//If the value is zero, best.pdbqt file containing the coordinates of the best result found during all of the runs won't be generated, otherwise it will
if (strcmp("-gbest", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if (tempint == 0)
mypars->gen_best = 0;
else
mypars->gen_best = 1;
}
//Argument: name of result files.
if (strcmp("-resnam", argv [i]) == 0)
{
arg_recognized = 1;
strcpy(mypars->resname, argv [i+1]);
}
//Argument: use modified QASP (from VirtualDrug) instead of original one used by AutoDock
//If the value is not zero, the modified parameter will be used.
if (strcmp("-modqp", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%ld", &tempint);
if (tempint == 0)
mypars->qasp = 0.01097f; //original AutoDock QASP parameter
else
mypars->qasp = 0.00679f; //from VirtualDrug
}
//Argument: rmsd tolerance for clustering.
//This will be used during clustering for the tolerance distance.
if (strcmp("-rmstol", argv [i]) == 0)
{
arg_recognized = 1;
sscanf(argv [i+1], "%f", &tempfloat);
if (tempfloat > 0.0)
mypars->rmsd_tolerance = tempfloat;
else
printf("Warning: value of -rmstol argument ignored. Value must be a double greater than 0.\n");
}
// ----------------------------------
//Argument: ligand xray pdbqt file name
if (strcmp("-xraylfile", argv[i]) == 0)
{
arg_recognized = 1;
strcpy(mypars->xrayligandfile, argv[i+1]);
mypars->given_xrayligandfile = true;
printf("Info: using -xraylfile value as X-ray ligand.");
}
// ----------------------------------
if (arg_recognized != 1)
printf("Warning: unknown argument '%s'.\n", argv [i]);
}
//validating some settings
if (mypars->pop_size < mypars->gen_pdbs)
{
printf("Warning: value of -npdb argument igonred. Value mustn't be greater than the population size.\n");
mypars->gen_pdbs = 1;
}
}
void gen_initpop_and_reflig(Dockpars* mypars,
float* init_populations,
float* ref_ori_angles,
Liganddata* myligand,
const Gridinfo* mygrid)
//The function generates a random initial population
//(or alternatively, it reads from an external file according to mypars),
//and the angles of the reference orientation.
//The parameters mypars, myligand and mygrid describe the current docking.
//The pointers init_population and ref_ori_angles have to point to
//two allocated memory regions with proper size which the function will fill with random values.
//Each contiguous GENOTYPE_LENGTH_IN_GLOBMEM pieces of floats in init_population corresponds to a genotype,
//and each contiguous three pieces of floats in ref_ori_angles corresponds to
//the phi, theta and angle genes of the reference orientation.
//In addition, as part of reference orientation handling,
//the function moves myligand to origo and scales it according to grid spacing.
{
int entity_id, gene_id;
int gen_pop, gen_seeds;
FILE* fp;
int i;
float init_orientation[MAX_NUM_OF_ROTBONDS+6];
double movvec_to_origo[3];
int pop_size = mypars->pop_size;
float u1, u2, u3; // to generate random quaternion
float qw, qx, qy, qz; // random quaternion
float x, y, z, s; // convert quaternion to angles
float phi, theta, rotangle;
//initial population
gen_pop = 0;
//Reading initial population from file if only 1 run was requested
if (mypars->initpop_gen_or_loadfile == 1)
{
if (mypars->num_of_runs != 1)
{
printf("Warning: more than 1 run was requested. New populations will be generated \ninstead of being loaded from initpop.txt\n");
gen_pop = 1;
}
else
{
fp = fopen("initpop.txt","rb"); // fp = fopen("initpop.txt","r");
if (fp == NULL)
{
printf("Warning: can't find initpop.txt. A new population will be generated.\n");
gen_pop = 1;
}
else
{
for (entity_id=0; entity_id<pop_size; entity_id++)
for (gene_id=0; gene_id<MAX_NUM_OF_ROTBONDS+6; gene_id++)
fscanf(fp, "%f", &(init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+gene_id]));
//reading reference orienation angles from file
fscanf(fp, "%f", &(mypars->ref_ori_angles[0]));
fscanf(fp, "%f", &(mypars->ref_ori_angles[1]));
fscanf(fp, "%f", &(mypars->ref_ori_angles[2]));
fclose(fp);
}
}
}
else
gen_pop = 1;
//Generating initial population
if (gen_pop == 1)
{
for (entity_id=0; entity_id<pop_size*mypars->num_of_runs; entity_id++) {
for (gene_id=0; gene_id<3; gene_id++) {
#if defined (REPRO)
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+gene_id] = 30.1186;
#else
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+gene_id] = (float) myrand()*(mygrid->size_xyz_angstr[gene_id]);
#endif
}
// generate random quaternion
u1 = (float) myrand();
u2 = (float) myrand();
u3 = (float) myrand();
qw = sqrt(1.0 - u1) * sin(PI_TIMES_2 * u2);
qx = sqrt(1.0 - u1) * cos(PI_TIMES_2 * u2);
qy = sqrt( u1) * sin(PI_TIMES_2 * u3);
qz = sqrt( u1) * cos(PI_TIMES_2 * u3);
// convert to angle representation
rotangle = 2.0 * acos(qw);
s = sqrt(1.0 - (qw * qw));
if (s < 0.001){ // rotangle too small
x = qx;
y = qy;
z = qz;
} else {
x = qx / s;
y = qy / s;
z = qz / s;
}
theta = acos(z);
phi = atan2(y, x);
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+3] = phi / DEG_TO_RAD;
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+4] = theta / DEG_TO_RAD;
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+5] = rotangle / DEG_TO_RAD;
//printf("angles = %8.2f, %8.2f, %8.2f\n", phi / DEG_TO_RAD, theta / DEG_TO_RAD, rotangle/DEG_TO_RAD);
/*
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+3] = (float) myrand() * 360.0;
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+4] = (float) myrand() * 360.0;
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+5] = (float) myrand() * 360.0;
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+3] = (float) myrand() * 360;
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+4] = (float) myrand() * 180;
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+5] = (float) myrand() * 360;
*/
for (gene_id=6; gene_id<MAX_NUM_OF_ROTBONDS+6; gene_id++) {
#if defined (REPRO)
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+gene_id] = 22.0452;
#else
init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+gene_id] = myrand()*360;
#endif
}
}
//generating reference orientation angles
#if defined (REPRO)
mypars->ref_ori_angles[0] = 190.279;
mypars->ref_ori_angles[1] = 190.279;
mypars->ref_ori_angles[2] = 190.279;
#else
// mypars->ref_ori_angles[0] = (float) floor(myrand()*360*100)/100.0;
// mypars->ref_ori_angles[1] = (float) floor(myrand()*/*360*/180*100)/100.0;
// mypars->ref_ori_angles[2] = (float) floor(myrand()*360*100)/100.0;
// mypars->ref_ori_angles[0] = 0.0;
// mypars->ref_ori_angles[1] = 0.0;
// mypars->ref_ori_angles[2] = 0.0;
#endif
//Writing first initial population to initpop.txt
fp = fopen("initpop.txt", "w");
if (fp == NULL)
printf("Warning: can't create initpop.txt.\n");
else
{
for (entity_id=0; entity_id<pop_size; entity_id++)
for (gene_id=0; gene_id<MAX_NUM_OF_ROTBONDS+6; gene_id++)
fprintf(fp, "%f ", init_populations[entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+gene_id]);
//writing reference orientation angles to initpop.txt
fprintf(fp, "%f ", mypars->ref_ori_angles[0]);
fprintf(fp, "%f ", mypars->ref_ori_angles[1]);
fprintf(fp, "%f ", mypars->ref_ori_angles[2]);
fclose(fp);
}
}
//genotypes should contain x, y and z genes in grid spacing instead of Angstroms
//(but was previously generated in Angstroms since fdock does the same)
for (entity_id=0; entity_id<pop_size*mypars->num_of_runs; entity_id++)
for (gene_id=0; gene_id<3; gene_id++)
init_populations [entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+gene_id] = init_populations [entity_id*GENOTYPE_LENGTH_IN_GLOBMEM+gene_id]/mygrid->spacing;
//changing initial orientation of reference ligand
/*for (i=0; i<38; i++)
switch (i)
{
case 3: init_orientation [i] = mypars->ref_ori_angles [0];
break;
case 4: init_orientation [i] = mypars->ref_ori_angles [1];
break;
case 5: init_orientation [i] = mypars->ref_ori_angles [2];
break;
default: init_orientation [i] = 0;
}
change_conform_f(myligand, init_orientation, 0);*/
//initial orientation will be calculated during docking,
//only the required angles are generated here,
//but the angles possibly read from file are ignored
for (i=0; i<mypars->num_of_runs; i++)
{
#if defined (REPRO)
ref_ori_angles[3*i] = 190.279;
ref_ori_angles[3*i+1] = 90.279;
ref_ori_angles[3*i+2] = 190.279;
#else
// Enable only for debugging.
// These specific values of rotational genes (in axis-angle space)
// correspond to a quaternion for NO rotation.
// ref_ori_angles[3*i] = 0.0f;
// ref_ori_angles[3*i+1] = 0.0f;
// ref_ori_angles[3*i+2] = 0.0f;
// Enable for release.
// ref_ori_angles[3*i] = (float) (myrand()*360.0); //phi
// ref_ori_angles[3*i+1] = (float) (myrand()*180.0); //theta
// ref_ori_angles[3*i+2] = (float) (myrand()*360.0); //angle
// uniform distr.
// generate random quaternion
u1 = (float) myrand();
u2 = (float) myrand();
u3 = (float) myrand();
qw = sqrt(1.0 - u1) * sin(PI_TIMES_2 * u2);
qx = sqrt(1.0 - u1) * cos(PI_TIMES_2 * u2);
qy = sqrt( u1) * sin(PI_TIMES_2 * u3);
qz = sqrt( u1) * cos(PI_TIMES_2 * u3);
// convert to angle representation
rotangle = 2.0 * acos(qw);
s = sqrt(1.0 - (qw * qw));
if (s < 0.001){ // rotangle too small
x = qx;
y = qy;
z = qz;
} else {
x = qx / s;
y = qy / s;
z = qz / s;
}
theta = acos(z);
phi = atan2(y, x);
ref_ori_angles[3*i] = phi / DEG_TO_RAD;
ref_ori_angles[3*i+1] = theta / DEG_TO_RAD;
ref_ori_angles[3*i+2] = rotangle / DEG_TO_RAD;
#endif
}
#if 0
for (i=0; i<mypars->num_of_runs; i++)
{
//#if defined (REPRO)
// These specific values for the rotation genes (in Shoemake space)
// correspond to a quaternion for NO rotation.
//ref_ori_angles[3*i] = 0.0f;
//ref_ori_angles[3*i+1] = 0.25f;
//ref_ori_angles[3*i+2] = 0.0f;
//#else
ref_ori_angles[3*i] = ((float) rand()/ (float) RAND_MAX); // u1
ref_ori_angles[3*i+1] = ((float) rand()/ (float) RAND_MAX); // u2
ref_ori_angles[3*i+2] = ((float) rand()/ (float) RAND_MAX); // u3
//printf("u1, u2, u3: %10f %10f %10f \n", ref_ori_angles[3*i], ref_ori_angles[3*i+1], ref_ori_angles[3*i+2]);
//#endif
}
#endif
get_movvec_to_origo(myligand, movvec_to_origo);
move_ligand(myligand, movvec_to_origo);
scale_ligand(myligand, 1.0/mygrid->spacing);
get_moving_and_unit_vectors(myligand);
/*
printf("ligand: movvec_to_origo: %f %f %f\n", movvec_to_origo[0], movvec_to_origo[1], movvec_to_origo[2]);
*/
}