Skip to content
/ EBIM-NLI Public

Enhanced BiLSTM Inference Model for Natural Language Inference

License

Notifications You must be signed in to change notification settings

sdnr1/EBIM-NLI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EBIM-NLI

This is an implementation of Enhanced BiLSTM Inference Model for Natural Language Inference in Keras. The model is based on a paper by Chen et al. Link : Enhanced LSTM for Natural Language Inference

Dataset used is The Stanford Natural Language Inference (SNLI) Corpus. The model uses pre-trained word vectors, GloVe: Global Vectors for Word Representation.

Usage

Keras is needed to train the model, and test it. NLI.ipynb needs to be executed for training and testing the model.

Once the model is trained, the following files are generated :

1. tokenizer.pickle - tokenizes sentences
2. embeddings.npy - Word embeddings based on the GloVe model.
3. NLI.h5 - trained weights for the EBIM model

These files are used by app.py for predicting the class of a given input.

Releases

No releases published

Packages

No packages published