A library that provides cryptographic and general-purpose functions for Secure Systems Lab projects at NYU. The routines are general enough to be usable by other projects.
securesystemslib supports public-key and general-purpose cryptography, such as ECDSA, Ed25519, RSA, SHA256, SHA512, etc. Most of the cryptographic operations are performed by the cryptography and PyNaCl libraries, but verification of Ed25519 signatures can be done in pure Python.
The cryptography library is used to generate keys and signatures with the ECDSA and RSA algorithms, and perform general-purpose cryptography such as encrypting keys. The PyNaCl library is used to generate Ed25519 keys and signatures. PyNaCl is a Python binding to the Networking and Cryptography Library. For key storage, RSA keys may be stored in PEM or JSON format, and Ed25519 keys in JSON format. Generating, importing, and loading cryptographic key files can be done with functions available in securesystemslib.
securesystemslib also provides an interface to the GNU Privacy Guard (GPG) command line tool, with functions to create RSA and DSA signatures using private keys in a local gpg keychain; to export the corresponding public keys in a pythonic format; and to verify the created signatures using the exported keys. The latter does not require the gpg command line tool to be installed, instead the cryptography library is used.
$ pip install securesystemslib
The default installation only supports Ed25519 keys and signatures (in pure Python). Support for RSA, ECDSA, and E25519 via the cryptography and PyNaCl libraries is available by installing the crypto and pynacl extras:
$ pip install securesystemslib[crypto] $ pip install securesystemslib[pynacl]
Note: In the instructions below, lines that start with >>> denote commands that should be entered by the reader, # begins the start of a comment, and text without prepended symbols is the output of a command.
>>> from securesystemslib.interface import * # The following function creates an RSA key pair, where the private key is # saved to "rsa_key1" and the public key to "rsa_key1.pub" (both saved to # the current working directory). A full directory path may be specified # instead of saving keys to the current working directory. If specified # directories do not exist, they will be created. >>> generate_and_write_rsa_keypair( password="password", filepath="rsa_key1", bits=2048) # If the key length is unspecified, it defaults to 3072 bits. A length of # less than 2048 bits raises an exception. A similar function is available # to supply a password on the prompt. If an empty password is entered, the # private key is saved unencrypted. >>> generate_and_write_rsa_keypair_with_prompt("rsa_key2") enter password to encrypt private key file '/path/to/rsa_key2' (leave empty if key should not be encrypted): Confirm:
The following four key files should now exist:
- rsa_key1
- rsa_key1.pub
- rsa_key2
- rsa_key2.pub
# Continuing from the previous section . . . # Import an existing public key. >>> public_rsa_key1 = import_rsa_publickey_from_file("rsa_key1.pub") # Import an existing private key. If your private key is encrypted, # which it should be, you either have to pass a 'password' or enter one # on the prompt. >>> private_rsa_key1 = import_rsa_privatekey_from_file("rsa_key1", password="some passphrase") # OR: >>> private_rsa_key1 = import_rsa_privatekey_from_file("rsa_key1", prompt=True) enter password to decrypt private key file '/path/to/rsa_key1' (leave empty if key not encrypted):
import_rsa_privatekey_from_file() raises a securesystemslib.exceptions.CryptoError exception if the key / password is invalid:
securesystemslib.exceptions.CryptoError: RSA (public, private) tuple cannot be generated from the encrypted PEM string: Bad decrypt. Incorrect password?
Note: The specific message provided by the exception might differ depending on which cryptography library is used.
# Continuing from the previous section . . . # The same generation and import functions as for rsa keys exist for ed25519 >>> generate_and_write_ed25519_keypair_with_prompt('ed25519_key') enter password to encrypt private key file '/path/to/ed25519_key' (leave empty if key should not be encrypted): Confirm: # Import the Ed25519 public key just created . . . >>> public_ed25519_key = import_ed25519_publickey_from_file('ed25519_key.pub') # and its corresponding private key. >>> private_ed25519_key = import_ed25519_privatekey_from_file('ed25519_key', prompt=True) enter password to decrypt private key file '/path/to/ed25519_key' (leave empty if key should not be encrypted):
# The same generation and import functions as for rsa and ed25519 keys # exist for ecdsa >>> generate_and_write_ecdsa_keypair_with_prompt('ecdsa_key') enter password to decrypt private key file '/path/to/ecdsa_key' (leave empty if key should not be encrypted): >>> public_ecdsa_key = import_ecdsa_publickey_from_file('ecdsa_key.pub') >>> private_ecdsa_key = import_ecdsa_privatekey_from_file('ecdsa_key', prompt=True) enter password to decrypt private key file '/path/to/ecdsa_key' (leave empty if key should not be encrypted):
Note: Users may also access the crypto functions directly to perform cryptographic operations.
>>> from securesystemslib.keys import * >>> data = b'The quick brown fox jumps over the lazy dog' >>> ed25519_key = generate_ed25519_key() >>> signature = create_signature(ed25519_key, data) >>> rsa_key = generate_rsa_key(2048) >>> signature = create_signature(rsa_key, data) >>> ecdsa_key = generate_ecdsa_key() >>> signature = create_signature(ecdsa_key, data)
# Continuing from the previous sections . . . >>> data = b'The quick brown fox jumps over the lazy dog' >>> ed25519_key = generate_ed25519_key() >>> signature = create_signature(ed25519_key, data) >>> verify_signature(ed25519_key, signature, data) True >>> verify_signature(ed25519_key, signature, 'bad_data') False >>> rsa_key = generate_rsa_key() >>> signature = create_signature(rsa_key, data) >>> verify_signature(rsa_key, signature, data) True >>> ecdsa_key = generate_ecdsa_key() >>> signature = create_signature(ecdsa_key, data) >>> verify_signature(ecdsa_key, signature, data) True
create_rsa_encrypted_pem()
# Continuing from the previous sections . . . >>> rsa_key = generate_rsa_key() >>> private = rsa_key['keyval']['private'] >>> passphrase = 'secret' >>> encrypted_pem = create_rsa_encrypted_pem(private, passphrase)
import_rsakey_from_public_pem()
>>> rsa_key = generate_rsa_key() >>> public = rsa_key['keyval']['public'] >>> rsa_key2 = import_rsakey_from_public_pem(public)
import_rsakey_from_pem()
>>> rsa_key = generate_rsa_key() >>> public = rsa_key['keyval']['public'] >>> private = rsa_key['keyval']['private'] >>> rsa_key2 = import_rsakey_from_pem(public) >>> rsa_key3 = import_rsakey_from_pem(private)
extract_pem()
>>> rsa_key = generate_rsa_key() >>> private_pem = extract_pem(rsakey['keyval']['private'], private_pem=True) >>> public_pem = extract_pem(rsakey['keyval']['public'], private_pem=False)
encrypt_key()
>>> ed25519_key = generate_ed25519_key() >>> password = 'secret' >>> encrypted_key = encrypt_key(ed25519_key, password)
decrypt_key()
>>> ed25519_key = generate_ed25519_key() >>> password = 'secret' >>> encrypted_key = encrypt_key(ed25519_key, password) >>> decrypted_key = decrypt_key(encrypted_key.encode('utf-8'), password) >>> decrypted_key == ed25519_key True
create_rsa_encrypted_pem()
>>> rsa_key = generate_rsa_key() >>> private = rsa_key['keyval']['private'] >>> passphrase = 'secret' >>> encrypted_pem = create_rsa_encrypted_pem(private, passphrase)
is_pem_public()
>>> rsa_key = generate_rsa_key() >>> public = rsa_key['keyval']['public'] >>> private = rsa_key['keyval']['private'] >>> is_pem_public(public) True >>> is_pem_public(private) False
is_pem_private()
>>> rsa_key = generate_rsa_key() >>> private = rsa_key['keyval']['private'] >>> public = rsa_key['keyval']['public'] >>> is_pem_private(private) True >>> is_pem_private(public) False
import_ecdsakey_from_private_pem()
>>> ecdsa_key = generate_ecdsa_key() >>> private_pem = ecdsa_key['keyval']['private'] >>> ecdsa_key2 = import_ecdsakey_from_private_pem(private_pem)
import_ecdsakey_from_public_pem()
>>> ecdsa_key = generate_ecdsa_key() >>> public = ecdsa_key['keyval']['public'] >>> ecdsa_key2 = import_ecdsakey_from_public_pem(public)
import_ecdsakey_from_pem()
>>> ecdsa_key = generate_ecdsa_key() >>> private_pem = ecdsa_key['keyval']['private'] >>> ecdsa_key2 = import_ecdsakey_from_pem(private_pem) >>> public_pem = ecdsa_key['keyval']['public'] >>> ecdsa_key2 = import_ecdsakey_from_pem(public_pem)
Signature creation and public key export requires installation of the gpg or gpg2 command line tool, which may be downloaded from https://gnupg.org/download. It is also needed to generate the supported RSA or DSA signing keys (see gpg man pages for detailed instructions). Sample keys are available in a test keyring at tests/gpg_keyrings/rsa, which may be passed to the signing and export functions using the homedir argument (if not passed the default keyring is used). The GPG client to use can be also specified with the help of environment variable GNUPG.
>>> import securesystemslib.gpg.functions as gpg >>> data = b"The quick brown fox jumps over the lazy dog" >>> signing_key_id = "8465A1E2E0FB2B40ADB2478E18FB3F537E0C8A17" >>> keyring = "tests/gpg_keyrings/rsa" >>> signature = gpg.create_signature(data, signing_key_id, homedir=keyring) >>> public_key = gpg.export_pubkey(non_default_signing_key, homedir=keyring) >>> gpg.verify_signature(signature, public_key, data) True
Testing is done with tox, which can be installed with pip:
$ pip install tox
Secure Systems Library supports multiple versions of Python. For that reason, the project is tested against multiple virtual environments with different Python versions. If you run
$ tox
this will run all tests creating virtual environments for all python versions described in the tox.ini file.
If you want to run the tests against specific python version, for example Python 3.7, you will use:
$ tox -e py37