-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.js
302 lines (277 loc) · 11.2 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
var clarifaiApiKey = 'YOUR_API_KEY';
var workflowId = 'YOUR_WORKFLOW_ID';
var app = new Clarifai.App({
apiKey: clarifaiApiKey
});
// Handles image upload
function uploadImage() {
var preview = document.querySelector('img');
var file = document.querySelector('input[type=file]').files[0];
var reader = new FileReader();
reader.addEventListener("load", function () {
preview.src = reader.result;
var imageData = reader.result;
imageData = imageData.replace(/^data:image\/(.*);base64,/, '');
predictFromWorkflow(imageData);
}, false);
if (file) {
reader.readAsDataURL(file);
preview.style.display = "inherit";
}
}
// Analyzes image provided with Clarifai's Workflow API
function predictFromWorkflow(photoUrl) {
app.workflow.predict(workflowId, {base64: photoUrl}).then(
function(response){
var outputs = response.results[0].outputs;
var analysis = $(".analysis");
analysis.empty();
console.log(outputs);
outputs.forEach(function(output) {
var modelName = getModelName(output);
// Create heading for each section
var newModelSection = document.createElement("div");
newModelSection.className = modelName + " modal-container";
var newModelHeader = document.createElement("h2");
newModelHeader.innerHTML = modelName;
newModelHeader.className = "model-header";
var formattedString = getFormattedString(output);
var newModelText = document.createElement("p");
newModelText.innerHTML = formattedString;
newModelText.className = "model-text";
newModelSection.append(newModelHeader);
newModelSection.append(newModelText);
analysis.append(newModelSection);
});
},
function(err){
console.log(err);
}
);
}
// Helper function to get model name
function getModelName(output) {
if (output.model.display_name !== undefined) {
return output.model.display_name;
} else if (output.model.name !== undefined) {
return output.model.name;
} else {
return "";
}
}
// Helper function to get output customized for each model
function getFormattedString(output) {
var formattedString = "";
var data = output.data;
var maxItems = 3;
// General
if (output.model.model_version.id === "aa9ca48295b37401f8af92ad1af0d91d") {
var items = data.concepts;
if (items.length < maxItems) {
maxItems = items.length;
if (maxItems === 1) {
formattedString = "The thing we are most confident in detecting is:";
}
} else {
formattedString = "The " + maxItems + " things we are most confident in detecting are:";
}
for (var i = 0; i < maxItems; i++) {
formattedString += "<br/>- " + items[i].name + " at a " + (Math.round(items[i].value * 10000) / 100) + "% probability";
}
}
// Apparel
else if (output.model.model_version.id === "dc2cd6d9bff5425a80bfe0c4105583c1") {
var items = data.concepts;
if (items.length < maxItems) {
maxItems = items.length;
if (maxItems === 1) {
formattedString = "The piece of apparel we are most confident in detecting is:";
}
} else {
formattedString = "The " + maxItems + " pieces of apparel we are most confident in detecting are:";
}
for (var i = 0; i < maxItems; i++) {
formattedString += "<br/>- " + items[i].name + " at a " + (Math.round(items[i].value * 10000) / 100) + "% probability";
}
}
// Celebrity
else if (output.model.model_version.id === "bdb0537982ae4e0da563ed836ccfa065") {
var items = data.regions;
if (data.regions.length === 1) {
formattedString = "The person in this picture we are confident in detecting is:<br/>";
} else {
formattedString = "The people in this picture we are confident in detecting are:<br/>";
}
for (var i = 0; i < items.length; i++) {
var item = items[i].data.face.identity.concepts[0];
formattedString += "- " + item.name + " at a " + (Math.round(item.value * 10000) / 100) + "% probability<br/>";
}
}
// Color
else if (output.model.model_version.id === "dd9458324b4b45c2be1a7ba84d27cd04") {
var items = data.colors;
if (items.length < maxItems) {
maxItems = items.length;
if (maxItems === 1) {
formattedString = "The color we are most confident in detecting is:";
}
} else {
formattedString = "The " + maxItems + " colors we are most confident in detecting are:";
}
for (var i = 0; i < maxItems; i++) {
formattedString += "<br/>- " + items[i].raw_hex + " (" + items[i].w3c.name + ") at a " + (Math.round(items[i].value * 10000) / 100) + "% probability";
}
}
// Demographics
else if (output.model.model_version.id === "f783f0807c52474c8c6ad20c8cf45fc0") {
var items = data.regions;
formattedString = "The demographics we are confident in detecting are:";
for (var i = 0; i < items.length; i++) {
var item = items[i].data.face;
formattedString += "<br/>- " + item.multicultural_appearance.concepts[0].name + ", "
+ item.gender_appearance.concepts[0].name + ", "
+ item.age_appearance.concepts[0].name + " year old";
}
}
// Face Detection
else if (output.model.model_version.id === "c67b5872d8b44df4be55f2b3de3ebcbb") {
var numFaces = data.regions.length;
if (numFaces === 1) {
formattedString = "There is 1 face detected in this picture.";
} else {
formattedString = "There are " + numFaces + " faces detected in this picture.";
}
}
// Face Embedding
else if (output.model.model_version.id === "ec1740642c83478392e7b8735c43c630") {
var items = data.regions;
if (items.length === 1) {
formattedString = "Open up the console to see an array of numerical vectors representing 1 face in a 1024-dimensional space.";
} else {
formattedString = "Open up the console to see " + items.length + " arrays of numerical vectors representing " + items.length + " faces in a 1024-dimensional space.";
}
for (var i = 0; i < items.length; i++) {
console.log("*** Face Embedding Output ***");
console.log("Face " + i);
console.log(items[i].data.embeddings[0]);
}
}
// Focus
else if (output.model.model_version.id === "fefeafd0c9224bce9274f06dad43553e") {
formattedString = "Tis image has:<br/>- focus value of " + data.focus.value + "<br/>- density of " + data.focus.density;
}
// Food
else if (output.model.model_version.id === "dfebc169854e429086aceb8368662641") {
var items = data.concepts;
if (items.length < maxItems) {
maxItems = items.length;
if (maxItems === 1) {
formattedString = "The " + maxItems + " food item we are most confident in detecting are:";
}
} else {
formattedString = "The " + maxItems + " food items we are most confident in detecting are:";
}
for (var i = 0; i < maxItems; i++) {
formattedString += "<br/>- " + items[i].name + " at a " + (Math.round(items[i].value * 10000) / 100) + "% probability";
}
}
// General Embedding
else if (output.model.model_version.id === "bb7ac05c86be42d38b67bc473d333e07") {
formattedString = "Open up the console to see an array of numerical vectors representing the input image in a 1024-dimensional space.";
console.log("*** General Embedding Output ***");
console.log(data.embeddings[0]);
}
// Landscape Quality
else if (output.model.model_version.id === "a008c85bb6d44448ad35470bcd22666c") {
var items = data.concepts;
formattedString = "The probability that this photo's landscape is:";
for (var i = 0; i < items.length; i++) {
formattedString += "<br/>- " + items[i].name + " is " + (Math.round(items[i].value * 10000) / 100) + "%";
}
}
// Logo
else if (output.model.model_version.id === "ef1b7237d28b415f910ca343a9145e99") {
var items = data.regions;
if (items.length < maxItems) {
maxItems = items.length;
if (maxItems === 1) {
formattedString = "The " + maxItems + " logos we are most confident in detecting are:";
}
} else {
formattedString = "The " + maxItems + " logos we are most confident in detecting are:";
}
for (var i = 0; i < maxItems; i++) {
formattedString += "<br/>- " + items[i].data.concepts[0].name + " at a " + (Math.round(items[i].data.concepts[0].value * 10000) / 100) + "% probability";
}
}
// Moderation
else if (output.model.model_version.id === "aa8be956dbaa4b7a858826a84253cab9") {
var items = data.concepts;
formattedString = "This photo is/contains:";
for (var i = 0; i < items.length; i++) {
formattedString += "<br/>- " + items[i].name + " at a " + (Math.round(items[i].value * 10000) / 100) + "% probability";
}
}
// NSFW
else if (output.model.model_version.id === "aa47919c9a8d4d94bfa283121281bcc4") {
var items = data.concepts;
formattedString = "This photo is:";
for (var i = 0; i < items.length; i++) {
formattedString += "<br/>- " + items[i].name + " at a " + (Math.round(items[i].value * 10000) / 100) + "% probability";
}
}
// Portrait Quality
else if (output.model.model_version.id === "c2e2952acb80429c8abb53e2fe3e11cd") {
var items = data.concepts;
formattedString = "The probability that this photo's portraits are:";
for (var i = 0; i < items.length; i++) {
formattedString += "<br/>- " + items[i].name + " is " + (Math.round(items[i].value * 10000) / 100) + "%";
}
}
// Textures & Patterns
else if (output.model.model_version.id === "b38274b04b1b4fb28c1b442dbfafd1ef") {
var items = data.concepts;
if (items.length < maxItems) {
maxItems = items.length;
if (maxItems === 1) {
formattedString = "The texture or pattern we are most confident in detecting is:";
}
} else {
formattedString = "The " + maxItems + " textures and/or patterns we are most confident in detecting are:";
}
for (var i = 0; i < maxItems; i++) {
formattedString += "<br/>- " + items[i].name + " at a " + (Math.round(items[i].value * 10000) / 100) + "% probability";
}
}
// Travel
else if (output.model.model_version.id === "d2ffbf9730fd41fea79063270847be82") {
var items = data.concepts;
if (items.length < maxItems) {
maxItems = items.length;
if (maxItems === 1) {
formattedString = "The travel topic we are most confident in detecting is:";
}
} else {
formattedString = "The " + maxItems + " travel topics we are most confident in detecting are:";
}
for (var i = 0; i < maxItems; i++) {
formattedString += "<br/>- " + items[i].name + " at a " + (Math.round(items[i].value * 10000) / 100) + "% probability";
}
}
// Wedding
else if (output.model.model_version.id === "b91bcf877c464a38a25a742694da7535") {
var items = data.concepts;
if (items.length < maxItems) {
maxItems = items.length;
if (maxItems === 1) {
formattedString = "The wedding topic we are most confident in detecting is:";
}
} else {
formattedString = "The " + maxItems + " wedding topics we are most confident in detecting are:";
}
for (var i = 0; i < maxItems; i++) {
formattedString += "<br/>- " + items[i].name + " at a " + (Math.round(items[i].value * 10000) / 100) + "% probability";
}
}
return formattedString;
}