Skip to content

Commit

Permalink
isomorph.tst: suppress incorrect "1 generators" output
Browse files Browse the repository at this point in the history
In a future GAP version, this will change to "1 generator",
and so to maintain forwards and backwards compatibility we
should hide the output. It's inconsequential anyway.
  • Loading branch information
wilfwilson authored and james-d-mitchell committed Jan 26, 2021
1 parent f1ccad1 commit 71a5efa
Show file tree
Hide file tree
Showing 2 changed files with 7 additions and 6 deletions.
3 changes: 1 addition & 2 deletions tst/standard/isomorph.tst
Original file line number Diff line number Diff line change
Expand Up @@ -379,8 +379,7 @@ true
# AutomorphismGroup
gap> S := JonesMonoid(5);
<regular bipartition *-monoid of degree 5 with 4 generators>
gap> G := AutomorphismGroup(S);
<group with 1 generators>
gap> G := AutomorphismGroup(S);;
gap> StructureDescription(G);
"C2"
gap> S := FullTransformationMonoid(3);
Expand Down
10 changes: 6 additions & 4 deletions tst/standard/isorms.tst
Original file line number Diff line number Diff line change
Expand Up @@ -128,8 +128,9 @@ false
gap> S := ReesZeroMatrixSemigroup(FullTransformationMonoid(2),
> [[IdentityTransformation]]);
<Rees 0-matrix semigroup 1x1 over <full transformation monoid of degree 2>>
gap> AutomorphismGroup(S);
<group with 1 generators>
gap> G := AutomorphismGroup(S);;
gap> IsCyclic(G);
true

# AutomorphismGroup: for a RZMSDigraph with 0 generators
gap> func := function(n, i)
Expand All @@ -150,8 +151,9 @@ gap> AutomorphismGroup(R);
gap> R := ReesMatrixSemigroup(SymmetricInverseMonoid(2), [[PartialPerm([1])]]);
<Rees matrix semigroup 1x1 over <symmetric inverse monoid of degree 2>>
gap> GeneratorsOfSemigroup(R);;
gap> AutomorphismGroup(R);
<group with 1 generators>
gap> G := AutomorphismGroup(R);;
gap> IsCyclic(G);
true

# AutomorphismGroup: 1x1 RMS
gap> R := ReesMatrixSemigroup(Group(()), [[()]]);
Expand Down

0 comments on commit 71a5efa

Please sign in to comment.