Skip to content

senresearch/GeneNetworkAPI.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dev CI

GeneNetworkAPI

Provides access to the GeneNetwork database and analysis functions using the GeneNetwork REST API.

Karl Broman wrote the GNapi R package for providing access to GeneNetwork from R. This package follows the structure and function of that package closely.

Note on terminology

GeneNetwork collects data on genetically segregating populations (called groups) in a number of species including humans. Most of the phenotype data is "omic" data which are organized as datasets.

Check connection

To check if the website is responding properly:

julia> check_gn()
GeneNetwork is alive.
200

Get species list

Which species have data on them?

julia> list_species()
11×4 DataFrame
 Row │ FullName                           Id     Name             TaxonomyId 
     │ String                             Int64  String           Int64      
─────┼───────────────────────────────────────────────────────────────────────
   1 │ Mus musculus                           1  mouse                 10090
   2 │ Rattus norvegicus                      2  rat                   10116
   3 │ Arabidopsis thaliana                   3  arabidopsis            3702
   4 │ Homo sapiens                           4  human                  9606
   5 │ Hordeum vulgare                        5  barley                 4513
   6 │ Drosophila melanogaster                6  drosophila             7227
   7 │ Macaca mulatta                         7  macaque monkey         9544
   8 │ Glycine max                            8  soybean                3847
   9 │ Solanum lycopersicum                   9  tomato                 4081
  10 │ Populus trichocarpa                   10  poplar                 3689
  11 │ Oryzias latipes (Japanese medaka)     11  Oryzias latipes        8090

To get information on a single species:

julia> list_species("rat")
1×4 DataFrame
 Row │ FullName           Id     Name    TaxonomyId 
     │ String             Int64  String  Int64      
─────┼──────────────────────────────────────────────
   1 │ Rattus norvegicus      2  rat          10116

You could also subset (safer):

julia> GeneNetworkAPI.subset(list_species(), :Name => x->x.=="rat")
1×4 DataFrame
 Row │ FullName           Id     Name    TaxonomyId 
     │ String             Int64  String  Int64      
─────┼──────────────────────────────────────────────
   1 │ Rattus norvegicus      2  rat          10116

List groups for a species

Since the information is organized by segregating population ("group"), it is useful to get a list for a particular species you might be interested in.

julia> list_groups("rat")
7×8 DataFrame
 Row │ DisplayName                        FullName                           GeneticType  Id     MappingMethodId  Name             SpeciesId  public 
     │ String                             String                             String       Int64  String           String           Int64      Int64  
─────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │ Hybrid Rat Diversity Panel (Incl…  Hybrid Rat Diversity Panel (Incl…  None            10  1                HXBBXH                   2       2
   2 │ UIOWA SRxSHRSP F2                  UIOWA SRxSHRSP F2                  intercross      24  1                SRxSHRSPF2               2       2
   3 │ NIH Heterogeneous Stock (RGSMC 2…  NIH Heterogeneous Stock (RGSMC 2…  None            42  1                HSNIH-RGSMC              2       2
   4 │ NIH Heterogeneous Stock (Palmer)   NIH Heterogeneous Stock (Palmer)   None            55  1                HSNIH-Palmer             2       2
   5 │ NWU WKYxF344 F2 Behavior           NWU WKYxF344 F2 Behavior           intercross      82  3                NWU_WKYxF344_F2          2       2
   6 │ HIV-1Tg and Control                HIV-1Tg and Control                None            83  1                HIV-1Tg                  2       2
   7 │ HRDP-HXB/BXH Brain Proteome        HRDP-HXB/BXH Brain Proteome        None            87  1                HRDP_HXB-BXH-BP          2       2

You can see the type of population it is. Note the short name (Name) as that will be used in queries involving that population (group).

Get genotypes for a group

To get the genotypes of a group:

julia> get_geno("BXD") |> (x->first(x,10))
10×240 DataFrame
 Row │ Chr      Locus        cM       Mb       BXD1     BXD2     BXD5     BXD6     BXD8     BXD9     BXD11    BXD12    BXD13    BXD14    BXD15    BXD16    BXD18 ⋯
     │ String3  String31     Float64  Float64  String1  String1  String1  String1  String1  String1  String1  String1  String1  String1  String1  String1  Strin ⋯
─────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │ 1        rs31443144      1.5   3.01027  B        B        D        D        D        B        B        D        B        B        D        D        B     ⋯
   2 │ 1        rs6269442       1.5   3.4922   B        B        D        D        D        B        B        D        B        B        D        D        B
   3 │ 1        rs32285189      1.63  3.5112   B        B        D        D        D        B        B        D        B        B        D        D        B
   4 │ 1        rs258367496     1.63  3.6598   B        B        D        D        D        B        B        D        B        B        D        D        B
   5 │ 1        rs32430919      1.75  3.77702  B        B        D        D        D        B        B        D        B        B        D        D        B     ⋯
   6 │ 1        rs36251697      1.88  3.81227  B        B        D        D        D        B        B        D        B        B        D        D        B
   7 │ 1        rs30658298      2.01  4.43062  B        B        D        D        D        B        B        D        B        B        D        D        B
   8 │ 1        rs51852623      2.01  4.44674  B        B        D        D        D        B        B        D        B        B        D        D        B
   9 │ 1        rs31879829      2.14  4.51871  B        B        D        D        D        B        B        D        B        B        D        D        B     ⋯
  10 │ 1        rs36742481      2.14  4.77632  B        B        D        D        D        B        B        D        B        B        D        D        B
                                                                                                                                               224 columns omitted

Currently, we only support the .geno format which returns a data frame of genotypes with rows as marker and columns as individuals.

List datasets for a group

To list the (omic) datasets available for a group, you have to use the name as listed in the group list for a species:

julia> list_datasets("HSNIH-Palmer")
10×11 DataFrame
 Row │ AvgID  CreateTime                     DataScale  FullName                           Id     Long_Abbreviation              ProbeFreezeId  ShortName        ⋯
     │ Int64  String                         String     String                             Int64  String                         Int64          String           ⋯
─────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │    24  Mon, 27 Aug 2018 00:00:00 GMT  log2       HSNIH-Palmer Nucleus Accumbens C…    860  HSNIH-Rat-Acbc-RSeq-Aug18                347  HSNIH-Palmer Nuc ⋯
   2 │    24  Sun, 26 Aug 2018 00:00:00 GMT  log2       HSNIH-Palmer Infralimbic Cortex …    861  HSNIH-Rat-IL-RSeq-Aug18                  348  HSNIH-Palmer Inf
   3 │    24  Sat, 25 Aug 2018 00:00:00 GMT  log2       HSNIH-Palmer Lateral Habenula RN…    862  HSNIH-Rat-LHB-RSeq-Aug18                 349  HSNIH-Palmer Lat
   4 │    24  Fri, 24 Aug 2018 00:00:00 GMT  log2       HSNIH-Palmer Prelimbic Cortex RN…    863  HSNIH-Rat-PL-RSeq-Aug18                  350  HSNIH-Palmer Pre
   5 │    24  Thu, 23 Aug 2018 00:00:00 GMT  log2       HSNIH-Palmer Orbitofrontal Corte…    864  HSNIH-Rat-VoLo-RSeq-Aug18                351  HSNIH-Palmer Orb ⋯
   6 │    24  Fri, 14 Sep 2018 00:00:00 GMT  log2       HSNIH-Palmer Nucleus Accumbens C…    868  HSNIH-Rat-Acbc-RSeqlog2-Aug18            347  HSNIH-Palmer Nuc
   7 │    24  Fri, 14 Sep 2018 00:00:00 GMT  log2       HSNIH-Palmer Infralimbic Cortex …    869  HSNIH-Rat-IL-RSeqlog2-Aug18              348  HSNIH-Palmer Inf
   8 │    24  Fri, 14 Sep 2018 00:00:00 GMT  log2       HSNIH-Palmer Lateral Habenula RN…    870  HSNIH-Rat-LHB-RSeqlog2-Aug18             349  HSNIH-Palmer Lat
   9 │    24  Fri, 14 Sep 2018 00:00:00 GMT  log2       HSNIH-Palmer Prelimbic Cortex RN…    871  HSNIH-Rat-PL-RSeqlog2-Aug18              350  HSNIH-Palmer Pre ⋯
  10 │    24  Fri, 14 Sep 2018 00:00:00 GMT  log2       HSNIH-Palmer Orbitofrontal Corte…    872  HSNIH-Rat-VoLo-RSeqlog2-Aug18            351  HSNIH-Palmer Orb
                                                                                                                                                 4 columns omitted

Get sample data for a group

This gives you a matrix with rows as individuals/samples/strains and columns as "clinical" (non-omic) phenotypes. The number after the underscore is the phenotype number (to be used later). Some data may be missing.

julia> get_pheno("HSNIH-Palmer") |> (x->x[81:100,:]) |> show
20×509 DataFrame
 Row │ id          HSR_10308  HSR_10309  HSR_10310  HSR_10311  HSR_10312  HSR_10313  HSR_10314  HSR_10315       HSR_10316       HSR_10317      ⋯
     │ String15    Float64?   Float64?   Float64?   Float64?   Float64?   Float64?   Float64?   Float64?        Float64?        Float64?       ⋯
─────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │ 000721E489  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing        ⋯
   2 │ 00072AAC0D  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
   3 │ 00072AC972  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
   4 │ 00077E61DC  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
   5 │ 00077E61EC  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing        ⋯
   6 │ 00077E61F3       18.0       43.0       25.0       42.0       36.0        8.0       43.0       -0.514286        1.14667         1.125
   7 │ 00077E61F5  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
   8 │ 00077E6204  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
   9 │ 00077E6207       22.0       63.0       54.0       77.0       54.0       42.0       77.0        0.914286        1.07959         1.0      ⋯
  10 │ 00077E6299  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
  11 │ 00077E62CD  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
  12 │ 00077E62D2       55.0       54.0       31.0       16.0       25.0       18.0       55.0       -2.73333         0.780392        1.22222
  13 │ 00077E633D       25.0       47.0       58.0       35.0       27.0       35.0       58.0       -0.314286        1.19474         0.925926 ⋯
  14 │ 00077E634B  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
  15 │ 00077E63D9  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
  16 │ 00077E641E  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
  17 │ 00077E6433      112.0      131.0      117.0       60.0       82.0       70.0      131.0       -3.94286         1.95222         2.54546  ⋯
  18 │ 00077E64B3  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
  19 │ 00077E64BA      135.0      154.0      188.0      267.0       98.0       76.0      267.0       -3.65714         4.19178         4.35484
  20 │ 00077E64C1  missing    missing    missing    missing    missing    missing    missing    missing         missing         missing
                                                                                                                             498 columns omitted

To obtain omics phenotypes, you can utilize the get_omics() function, which provides a matrix with individuals/samples/strains as rows and omic phenotypes as columns. This function requires the input of a short abbreviation representing the available (omic) datasets for a particular group. To obtain the short abbreviation, you can refer to the section titled "List datasets for a group" and use the list_dataset() function. For instance, if you want to acquire the phenotype matrix corresponding to "HSNIH-Palmer Infralimbic Cortex RNA-Seq (Aug18) rlog," you would use its respective short abbreviation.

julia> get_omics("HSNIH-Rat-IL-RSeq-0818")
6171×32624 DataFrame
  Row │ id          ENSRNOG00000000001  ENSRNOG00000000007  ENSRNOG00000000008  ENSRNOG00000000009  ENSRNOG00000000010  ENSRNOG00000000012  ENSRNO ⋯
      │ String15    Float64?            Float64?            Float64?            Float64?            Float64?            Float64?            Float6 ⋯
──────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
    1 │ 00071F4FAF             missing             missing             missing             missing             missing             missing         ⋯
    2 │ 00071F6771             missing             missing             missing             missing             missing             missing        
    3 │ 00071F768E             missing             missing             missing             missing             missing             missing        
    4 │ 00071F95F9             missing             missing             missing             missing             missing             missing        
    5 │ 00071FB160             missing             missing             missing             missing             missing             missing         ⋯
    6 │ 00071FB747             missing             missing             missing             missing             missing             missing        
    7 │ 00072069AD             missing             missing             missing             missing             missing             missing
  ⋮   │     ⋮               ⋮                   ⋮                   ⋮                   ⋮                   ⋮                   ⋮                  ⋱
 6165 │ 0007929918             missing             missing             missing             missing             missing             missing
 6166 │ 0007929945             missing             missing             missing             missing             missing             missing         ⋯
 6167 │ 00077E840E             missing             missing             missing             missing             missing             missing
 6168 │ 00077E9879             missing             missing             missing             missing             missing             missing
 6169 │ 00077E9920             missing             missing             missing             missing             missing             missing
 6170 │ 00077E9D84             missing             missing             missing             missing             missing             missing         ⋯
 6171 │ 00077E949D             missing             missing             missing             missing             missing             missing
                                                                                                                 32617 columns and 6157 rows omitted

underscore is the phenotype number (to be used later). Some data may be missing.

Get information about traits

To get information on a particular (non-omic) trait use the group name and the trait number:

julia> info_dataset("HSNIH-Palmer","10308")
1×4 DataFrame
 Row │ dataset_type  description                        id     name                  
     │ String        String                             Int64  String                
─────┼───────────────────────────────────────────────────────────────────────────────
   1 │ phenotype     Central nervous system, behavior…  10308  reaction_time_pint1_5

To get information on a dataset (of omic traits) for a group, use:

julia> info_dataset("HSNIH-Rat-Acbc-RSeq-Aug18")
1×10 DataFrame
 Row │ confidential  data_scale  dataset_type     full_name                          id     name                      public  short_name                         ti ⋯
     │ Int64         String      String           String                             Int64  String                    Int64   String                             St ⋯
─────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │            0  log2        mRNA expression  HSNIH-Palmer Nucleus Accumbens C…    860  HSNIH-Rat-Acbc-RSeq-0818       1  HSNIH-Palmer Nucleus Accumbens C…  Nu ⋯
                                                                                                                                                    2 columns omitted

Summary information on traits

Get a list of the maximum LRS for each trait and position.

julia> info_pheno("HXBBXH") |> (x->first(x,10))
10×7 DataFrame
 Row │ Additive     Id     LRS       Locus        PhenotypeId  PublicationId  Sequence 
     │ Float64?     Int64  Float64?  String?      Int64        Int64          Int64    
─────┼─────────────────────────────────────────────────────────────────────────────────
   1 │  0.0499968   10001  16.2831   rs106114574         1449            319         1
   2 │ -0.0926364   10002  10.9777   rs63915446          1450            319         1
   3 │  0.60189     10003  13.6515   rs107486115         1451            319         1
   4 │ -0.543799    10004   8.43965  D5Rat147            1452            319         1
   5 │  0.00854221  10005  18.5895   rs106114574         1453            319         1
   6 │ -0.0142273   10006  11.9965   rs63915446          1454            319         1
   7 │  0.427167    10007  10.541    rs13452609          1455            319         1
   8 │ -0.936806    10008  13.2494   rs8143630           1456            319         1
   9 │ -0.635833    10009   9.97609  rs107549352         1457            319         1
  10 │ -0.681451    10010   9.59226  D7Mit13             1458            319         1

You could also specify a group and a trait number or a dataset and a probename.

julia> info_pheno("BXD","10001")
1×4 DataFrame
 Row │ additive  id     locus       lrs     
     │ Float64   Int64  String      Float64 
─────┼──────────────────────────────────────
   1 │  2.39444      4  rs48756159  13.4975
julia> info_pheno("HC_M2_0606_P","1436869_at")
1×13 DataFrame
 Row │ additive   alias                              chr     description                id     locus      lrs      mb       mean     name        p_value  se        ⋯
     │ Float64    String                             String  String                     Int64  String     Float64  Float64  Float64  String      Float64  Nothing   ⋯
─────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1 │ -0.214088  HHG1; HLP3; HPE3; SMMCI; Dsh; Hh…  5       sonic hedgehog (hedgehog)  99602  rs8253327  12.7711  28.4572  9.27909  1436869_at    0.306            ⋯
                                                                                                                                                     1 column omitted

Analysis commands

GEMMA

julia> run_gemma("BXDPublish","10015",use_loco=true) |> (x->first(x,10))
10×6 DataFrame
 Row │ Mb       additive   chr  lod_score  name         p_value  
     │ Float64  Float64    Any  Float64    String       Float64  
─────┼───────────────────────────────────────────────────────────
   1 │ 3.01027  -0.906398  1     0.448914  rs31443144   0.355702
   2 │ 3.4922   -0.906398  1     0.448914  rs6269442    0.355702
   3 │ 3.5112   -0.906398  1     0.448914  rs32285189   0.355702
   4 │ 3.6598   -0.906398  1     0.448914  rs258367496  0.355702
   5 │ 3.77702  -0.906398  1     0.448914  rs32430919   0.355702
   6 │ 3.81227  -0.906398  1     0.448914  rs36251697   0.355702
   7 │ 4.43062  -0.906398  1     0.448914  rs30658298   0.355702
   8 │ 4.44674  -0.906398  1     0.448914  rs51852623   0.355702
   9 │ 4.51871  -0.906398  1     0.448914  rs31879829   0.355702
  10 │ 4.77632  -0.906398  1     0.448914  rs36742481   0.355702

R/qtl

This function performs a one-dimensional genome scan. The arguments are

  • db (required) - DB name for trait above (Short_Abbreviation listed when you query for datasets)
  • trait (required) - ID for trait being mapped
  • method - hk (default) | ehk | em | imp | mr | mr-imp | mr-argmax ; Corresponds to the "method" option for the R/qtl scanone function.
  • model - normal (default) | binary | 2-part | np ; corresponds to the "model" option for the R/qtl scanone function
  • n_perm - number of permutations; 0 by default
  • control_marker - Name of marker to use as control; this relies on the user knowing the name of the marker they want to use as a covariate
  • interval_mapping - Whether to use interval mapping; "false" by default
julia> run_rqtl("BXDPublish", "10015") |> (x->first(x,10))
10×5 DataFrame
 Row │ Mb       cM       chr  lod_score  name        
     │ Float64  Float64  Any  Float64    String      
─────┼───────────────────────────────────────────────
   1 │ 3.01027  3.01027  1     0.116927  rs31443144
   2 │ 3.4922   3.4922   1     0.117404  rs6269442
   3 │ 3.5112   3.5112   1     0.117424  rs32285189
   4 │ 3.6598   3.6598   1     0.117573  rs258367496
   5 │ 3.77702  3.77702  1     0.117691  rs32430919
   6 │ 3.81227  3.81227  1     0.117727  rs36251697
   7 │ 4.43062  4.43062  1     0.118356  rs30658298
   8 │ 4.44674  4.44674  1     0.118372  rs51852623
   9 │ 4.51871  4.51871  1     0.118447  rs31879829
  10 │ 4.77632  4.77632  1     0.118714  rs36742481

Correlation

This function correlates a trait in a dataset against all traits in a target database.

  • trait_id (required) - ID for trait used for correlation
  • db (required) - DB name for the trait above (this is the Short_Abbreviation listed when you query for datasets)
  • target_db (required) - Target DB name to be correlated against
  • type - sample (default) | tissue
  • method - pearson (default) | spearman
  • return - Number of results to return (default = 500)
julia> run_correlation("1427571_at","HC_M2_0606_P","BXDPublish") |> (x->first(x,10))
10×4 DataFrame
 Row │ #_strains  p_value      sample_r   trait  
     │ Int64      Float64      Float64    String 
─────┼───────────────────────────────────────────
   1 │         6  0.00480466   -0.942857  20511
   2 │         6  0.00480466   -0.942857  20724
   3 │        12  1.82889e-5   -0.923362  13536
   4 │         7  0.00680719    0.892857  10157
   5 │         7  0.00680719   -0.892857  20392
   6 │         6  0.0188455     0.885714  20479
   7 │        12  0.000189298  -0.875658  12762
   8 │        12  0.000245942   0.868653  12760
   9 │         7  0.0136973    -0.857143  20559
  10 │        10  0.00222003   -0.842424  10925