-
Notifications
You must be signed in to change notification settings - Fork 26
/
post.py
578 lines (487 loc) · 24.4 KB
/
post.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, The HugginFace Inc. team and University of Washington.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import json
import logging
from multiprocessing import Queue
from multiprocessing.pool import ThreadPool
from threading import Thread
import numpy as np
import six
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm as tqdm_
import torch
import tokenization
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
QuestionResult = collections.namedtuple("QuestionResult",
['qas_id', 'start', 'end', 'span_logit',
'sparse'])
def tqdm(*args, min_interval=5.0, **kwargs):
return tqdm_(*args, mininterval=min_interval, **kwargs)
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
orig_answer_text):
"""Returns tokenized answer spans that better match the annotated answer."""
# The SQuAD annotations are character based. We first project them to
# whitespace-tokenized words. But then after WordPiece tokenization, we can
# often find a "better match". For example:
#
# Question: What year was John Smith born?
# Context: The leader was John Smith (1895-1943).
# Answer: 1895
#
# The original whitespace-tokenized answer will be "(1895-1943).". However
# after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
# the exact answer, 1895.
#
# However, this is not always possible. Consider the following:
#
# Question: What country is the top exporter of electornics?
# Context: The Japanese electronics industry is the lagest in the world.
# Answer: Japan
#
# In this case, the annotator chose "Japan" as a character sub-span of
# the word "Japanese". Since our WordPiece tokenizer does not split
# "Japanese", we just use "Japanese" as the annotation. This is fairly rare
# in SQuAD, but does happen.
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
for new_start in range(input_start, input_end + 1):
for new_end in range(input_end, new_start - 1, -1):
text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
if text_span == tok_answer_text:
return (new_start, new_end)
return (input_start, input_end)
def _check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
# Because of the sliding window approach taken to scoring documents, a single
# token can appear in multiple documents. E.g.
# Doc: the man went to the store and bought a gallon of milk
# Span A: the man went to the
# Span B: to the store and bought
# Span C: and bought a gallon of
# ...
#
# Now the word 'bought' will have two scores from spans B and C. We only
# want to consider the score with "maximum context", which we define as
# the *minimum* of its left and right context (the *sum* of left and
# right context will always be the same, of course).
#
# In the example the maximum context for 'bought' would be span C since
# it has 1 left context and 3 right context, while span B has 4 left context
# and 0 right context.
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
def write_predictions(all_examples, all_features, all_results,
max_answer_length, do_lower_case, output_prediction_file, verbose_logging,
threshold):
id2feature = {feature.unique_id: feature for feature in all_features}
id2example = {id_: all_examples[id2feature[id_].example_index] for id_ in id2feature}
word_count = 0
start_count = 0
end_count = 0
predictions = {}
scores = {}
for result in tqdm(all_results, total=len(all_features)):
feature = id2feature[result.unique_id]
example = id2example[result.unique_id]
id_ = example.qas_id
word_count += len(feature.tokens)
for start_index in range(len(feature.tokens)):
if result.filter_start_logits[start_index] >= threshold:
start_count += 1
for end_index in range(len(feature.tokens)):
if result.filter_end_logits[end_index] >= threshold:
end_count += 1
for start_index in range(len(feature.tokens)):
if result.filter_start_logits[start_index] < threshold:
continue
for end_index in range(start_index, min(len(feature.tokens), start_index + max_answer_length - 1)):
if result.filter_end_logits[end_index] < threshold:
continue
if start_index not in feature.token_to_orig_map:
continue
if end_index not in feature.token_to_orig_map:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
score = result.all_logits[start_index, end_index]
if id_ not in scores or score > scores[id_]:
orig_text, start_pos, end_pos = get_final_text_(example, feature, start_index, end_index,
do_lower_case, verbose_logging)
phrase = orig_text[start_pos:end_pos]
predictions[id_] = phrase
scores[id_] = score
print('num_start_vecs=%d, num_words=%d, nspw=%.4f' % (start_count, word_count, start_count / word_count))
print('num_end_vecs=%d, num_words=%d, nepw=%.4f' % (end_count, word_count, end_count / word_count))
with open(output_prediction_file, 'w') as fp:
json.dump(predictions, fp)
def get_metadata(id2example, features, results, max_answer_length, do_lower_case, verbose_logging, split_by_para):
start = np.concatenate([result.start[1:len(feature.tokens) - 1] for feature, result in zip(features, results)],
axis=0)
end = np.concatenate([result.end[1:len(feature.tokens) - 1] for feature, result in zip(features, results)], axis=0)
input_ids = None
sparse_map = None
if split_by_para and results[0].sparse is not None:
input_ids = np.concatenate([f.input_ids[1:len(f.tokens) - 1] for f in features], axis=0)
sparse_features = [result.sparse[1:len(feature.tokens) - 1, 1:len(feature.tokens) - 1]
for feature, result in zip(features, results)]
map_size = sum([k.shape[0] for k in sparse_features])
sparse_map = np.zeros((map_size, map_size), dtype=np.float32)
curr_size = 0
for sparse_feature in sparse_features:
sparse_map[curr_size:curr_size + sparse_feature.shape[0],
curr_size:curr_size + sparse_feature.shape[0]] = sparse_feature
curr_size += sparse_feature.shape[0]
fs = np.concatenate([result.filter_start_logits[1:len(feature.tokens) - 1]
for feature, result in zip(features, results)],
axis=0)
fe = np.concatenate([result.filter_end_logits[1:len(feature.tokens) - 1]
for feature, result in zip(features, results)],
axis=0)
span_logits = np.zeros([np.shape(start)[0], max_answer_length], dtype=start.dtype)
start2end = -1 * np.ones([np.shape(start)[0], max_answer_length], dtype=np.int32)
idx = 0
for feature, result in zip(features, results):
for i in range(1, len(feature.tokens) - 1):
for j in range(i, min(i + max_answer_length, len(feature.tokens) - 1)):
span_logits[idx, j - i] = result.span_logits[i, j]
start2end[idx, j - i] = idx + j - i
idx += 1
word2char_start = np.zeros([start.shape[0]], dtype=np.int32)
word2char_end = np.zeros([start.shape[0]], dtype=np.int32)
sep = ' [PAR] '
full_text = ""
prev_example = None
word_pos = 0
for feature in features:
example = id2example[feature.unique_id]
if prev_example is not None and feature.doc_span_index == 0:
full_text = full_text + ' '.join(prev_example.doc_tokens) + sep
for i in range(1, len(feature.tokens) - 1):
_, start_pos, _ = get_final_text_(example, feature, i, min(len(feature.tokens) - 2, i + 1), do_lower_case,
verbose_logging)
_, _, end_pos = get_final_text_(example, feature, max(1, i - 1), i, do_lower_case,
verbose_logging)
start_pos += len(full_text)
end_pos += len(full_text)
word2char_start[word_pos] = start_pos
word2char_end[word_pos] = end_pos
word_pos += 1
prev_example = example
full_text = full_text + ' '.join(prev_example.doc_tokens)
metadata = {'did': prev_example.doc_idx, 'context': full_text, 'title': prev_example.title,
'start': start, 'end': end, 'span_logits': span_logits,
'start2end': start2end,
'word2char_start': word2char_start, 'word2char_end': word2char_end,
'filter_start': fs, 'filter_end': fe, 'input_ids': input_ids,
'sparse': sparse_map}
if split_by_para:
metadata['pid'] = prev_example.pid
return metadata
def filter_metadata(metadata, threshold):
start_idxs, = np.where(metadata['filter_start'] > threshold)
end_idxs, = np.where(metadata['filter_end'] > threshold)
end_long2short = {long: short for short, long in enumerate(end_idxs)}
metadata['word2char_start'] = metadata['word2char_start'][start_idxs]
metadata['word2char_end'] = metadata['word2char_end'][end_idxs]
metadata['start'] = metadata['start'][start_idxs]
metadata['end'] = metadata['end'][end_idxs]
metadata['span_logits'] = metadata['span_logits'][start_idxs]
metadata['start2end'] = metadata['start2end'][start_idxs]
for i, each in enumerate(metadata['start2end']):
for j, long in enumerate(each.tolist()):
metadata['start2end'][i, j] = end_long2short[long] if long in end_long2short else -1
return metadata
def compress_metadata(metadata, offset, scale):
for key in ['start', 'end']:
if key in metadata:
metadata[key] = float_to_int8(metadata[key], offset, scale)
return metadata
def pool_func(item):
metadata_ = get_metadata(*item[:-1])
metadata_ = filter_metadata(metadata_, item[-1])
return metadata_
def write_hdf5(all_examples, all_features, all_results,
max_answer_length, do_lower_case, hdf5_path, filter_threshold, verbose_logging, offset=None, scale=None,
split_by_para=False, use_sparse=False):
assert len(all_examples) > 0
import h5py
from multiprocessing import Process
from time import time
id2feature = {feature.unique_id: feature for feature in all_features}
id2example = {id_: all_examples[id2feature[id_].example_index] for id_ in id2feature}
def add_(inqueue_, outqueue_):
with ThreadPool(2) as pool:
items = []
for item in iter(inqueue_.get, None):
args = list(item[:3]) + [max_answer_length, do_lower_case, verbose_logging] + [item[3],
filter_threshold]
items.append(args)
if len(items) < 16:
continue
out = pool.map(pool_func, items)
map(outqueue_.put, out)
items = []
out = pool.map(pool_func, items)
map(outqueue_.put, out)
outqueue_.put(None)
def add(inqueue_, outqueue_):
for item in iter(inqueue_.get, None):
args = list(item[:3]) + [max_answer_length, do_lower_case, verbose_logging] + [item[3], filter_threshold]
out = pool_func(args)
outqueue_.put(out)
outqueue_.put(None)
def write(outqueue_):
with h5py.File(hdf5_path) as f:
while True:
metadata = outqueue_.get()
if metadata:
did = str(metadata['did'])
if did in f:
if not split_by_para:
print('%s exists; replacing' % did)
del f[did]
dg = f.create_group(did)
else:
dg = f[did]
else:
dg = f.create_group(did)
if split_by_para:
pid = str(metadata['pid'])
if pid in dg:
print('%s %s exists; skipping' % (did, pid))
continue
dg = dg.create_group(pid)
dg.attrs['context'] = metadata['context']
dg.attrs['title'] = metadata['title']
if offset is not None:
metadata = compress_metadata(metadata, offset, scale)
dg.attrs['offset'] = offset
dg.attrs['scale'] = scale
dg.create_dataset('start', data=metadata['start'])
dg.create_dataset('end', data=metadata['end'])
if metadata['sparse'] is not None:
dg.create_dataset('sparse', data=metadata['sparse'])
dg.create_dataset('input_ids', data=metadata['input_ids'])
dg.create_dataset('span_logits', data=metadata['span_logits'])
dg.create_dataset('start2end', data=metadata['start2end'])
dg.create_dataset('word2char_start', data=metadata['word2char_start'])
dg.create_dataset('word2char_end', data=metadata['word2char_end'])
else:
break
features = []
results = []
inqueue = Queue(maxsize=500)
outqueue = Queue(maxsize=500)
write_p = Thread(target=write, args=(outqueue,))
p = Thread(target=add, args=(inqueue, outqueue))
write_p.start()
p.start()
start_time = time()
for count, result in enumerate(tqdm(all_results, total=len(all_features))):
example = id2example[result.unique_id]
feature = id2feature[result.unique_id]
if split_by_para:
condition = len(features) > 0 and feature.doc_span_index == 0
else:
condition = len(features) > 0 and example.pid == 0 and feature.doc_span_index == 0
if condition:
in_ = (id2example, features, results, split_by_para)
print('inqueue size: %d, outqueue size: %d' % (inqueue.qsize(), outqueue.qsize()))
inqueue.put(in_)
# add(id2example, features, results, split_by_para)
features = [feature]
results = [result]
else:
features.append(feature)
results.append(result)
if count % 500 == 0:
print('%d/%d at %.1f' % (count + 1, len(all_features), time() - start_time))
in_ = (id2example, features, results, split_by_para)
inqueue.put(in_)
inqueue.put(None)
p.join()
write_p.join()
def get_question_results(question_examples, query_eval_features, question_dataloader, device, model):
id2feature = {feature.unique_id: feature for feature in query_eval_features}
id2example = {id_: question_examples[id2feature[id_].example_index] for id_ in id2feature}
for (input_ids_, input_mask_, example_indices) in question_dataloader:
input_ids_ = input_ids_.to(device)
input_mask_ = input_mask_.to(device)
with torch.no_grad():
batch_start, batch_end, batch_span_logits, batch_sparse = model(query_ids=input_ids_,
query_mask=input_mask_)
for i, example_index in enumerate(example_indices):
start = batch_start[i].detach().cpu().numpy().astype(np.float16)
end = batch_end[i].detach().cpu().numpy().astype(np.float16)
sparse = None
if batch_sparse is not None:
sparse = batch_sparse[i].detach().cpu().numpy().astype(np.float16)
span_logit = batch_span_logits[i].detach().cpu().numpy().astype(np.float16)
query_eval_feature = query_eval_features[example_index.item()]
unique_id = int(query_eval_feature.unique_id)
qas_id = id2example[unique_id].qas_id
yield QuestionResult(qas_id=qas_id,
start=start,
end=end,
span_logit=span_logit,
sparse=sparse)
def write_question_results(question_results, question_features, path):
import h5py
with h5py.File(path, 'w') as f:
for question_result, question_feature in zip(question_results, question_features):
sparse = None
input_ids = None
if question_result.sparse is not None:
sparse = question_result.sparse[1:len(question_feature.tokens) - 1]
input_ids = question_feature.input_ids[1:len(question_feature.tokens) - 1]
data = np.concatenate([question_result.start, question_result.end, question_result.span_logit], -1)
f.create_dataset(question_result.qas_id, data=data)
if sparse is not None:
f.create_dataset(question_result.qas_id + '_sparse', data=sparse)
f.create_dataset(question_result.qas_id + '_input_ids', data=input_ids)
def convert_question_features_to_dataloader(query_eval_features, fp16, local_rank, predict_batch_size):
all_input_ids_ = torch.tensor([f.input_ids for f in query_eval_features], dtype=torch.long)
all_input_mask_ = torch.tensor([f.input_mask for f in query_eval_features], dtype=torch.long)
all_example_index_ = torch.arange(all_input_ids_.size(0), dtype=torch.long)
if fp16:
all_input_ids_, all_input_mask_ = tuple(t.half() for t in (all_input_ids_, all_input_mask_))
question_data = TensorDataset(all_input_ids_, all_input_mask_, all_example_index_)
if local_rank == -1:
question_sampler = SequentialSampler(question_data)
else:
question_sampler = DistributedSampler(question_data)
question_dataloader = DataLoader(question_data, sampler=question_sampler, batch_size=predict_batch_size)
return question_dataloader
def get_final_text_(example, feature, start_index, end_index, do_lower_case, verbose_logging):
tok_tokens = feature.tokens[start_index:(end_index + 1)]
orig_doc_start = feature.token_to_orig_map[start_index]
orig_doc_end = feature.token_to_orig_map[end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
full_text = " ".join(example.doc_tokens)
start_pos, end_pos = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
offset = sum(len(token) + 1 for token in example.doc_tokens[:orig_doc_start])
return full_text, offset + start_pos, offset + end_pos
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
"""Project the tokenized prediction back to the original text."""
# When we created the data, we kept track of the alignment between original
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
# now `orig_text` contains the span of our original text corresponding to the
# span that we predicted.
#
# However, `orig_text` may contain extra characters that we don't want in
# our prediction.
#
# For example, let's say:
# pred_text = steve smith
# orig_text = Steve Smith's
#
# We don't want to return `orig_text` because it contains the extra "'s".
#
# We don't want to return `pred_text` because it's already been normalized
# (the SQuAD eval script also does punctuation stripping/lower casing but
# our tokenizer does additional normalization like stripping accent
# characters).
#
# What we really want to return is "Steve Smith".
#
# Therefore, we have to apply a semi-complicated alignment heruistic between
# `pred_text` and `orig_text` to get a character-to-charcter alignment. This
# can fail in certain cases in which case we just return `orig_text`.
default_out = 0, len(orig_text)
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
if verbose_logging:
logger.info(
"Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
return default_out
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
if verbose_logging:
logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
orig_ns_text, tok_ns_text)
return default_out
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
if verbose_logging:
logger.info("Couldn't map start position")
return default_out
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
if verbose_logging:
logger.info("Couldn't map end position")
return default_out
# output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return orig_start_position, orig_end_position + 1
def float_to_int8(num, offset, factor):
out = (num - offset) * factor
out = out.clip(-128, 127)
out = np.round(out).astype(np.int8)
return out