forked from mattyamonaca/starline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
starline.py
268 lines (209 loc) · 9.88 KB
/
starline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from PIL import Image, ImageFilter
from collections import defaultdict
from skimage import color as sk_color
from PIL import Image
from tqdm import tqdm
from skimage.color import deltaE_ciede2000, rgb2lab
import cv2
import numpy as np
def replace_color(image, color_1, color_2, alpha_np):
# 画像データを配列に変換
data = np.array(image)
# RGBAモードの画像であるため、形状変更時に4チャネルを考慮
original_shape = data.shape
data = data.reshape(-1, 4) # RGBAのため、4チャネルでフラット化
# color_1のマッチングを検索する際にはRGB値のみを比較
matches = np.all(data[:, :3] == color_1, axis=1)
# 変更を追跡するためのフラグ
nochange_count = 0
idx = 0
while np.any(matches):
idx += 1
new_matches = np.zeros_like(matches)
match_num = np.sum(matches)
for i in tqdm(range(len(data))):
if matches[i]:
x, y = divmod(i, original_shape[1])
neighbors = [
(x-1, y), (x+1, y), (x, y-1), (x, y+1) # 上下左右
]
replacement_found = False
for nx, ny in neighbors:
if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
ni = nx * original_shape[1] + ny
# RGBのみ比較し、アルファは無視
if not np.all(data[ni, :3] == color_1, axis=0) and not np.all(data[ni, :3] == color_2, axis=0):
data[i, :3] = data[ni, :3] # RGB値のみ更新
replacement_found = True
continue
if not replacement_found:
new_matches[i] = True
matches = new_matches
if match_num == np.sum(matches):
nochange_count += 1
if nochange_count > 5:
break
# 最終的な画像をPIL形式で返す
data = data.reshape(original_shape)
data[:, :, 3] = 255 - alpha_np
return Image.fromarray(data, 'RGBA')
def recolor_lineart_and_composite(lineart_image, base_image, new_color, alpha_th):
"""
Recolor an RGBA lineart image to a single new color while preserving alpha, and composite it over a base image.
Args:
lineart_image (PIL.Image): The lineart image with RGBA channels.
base_image (PIL.Image): The base image to composite onto.
new_color (tuple): The new RGB color for the lineart (e.g., (255, 0, 0) for red).
Returns:
PIL.Image: The composited image with the recolored lineart on top.
"""
# Ensure images are in RGBA mode
if lineart_image.mode != 'RGBA':
lineart_image = lineart_image.convert('RGBA')
if base_image.mode != 'RGBA':
base_image = base_image.convert('RGBA')
# Extract the alpha channel from the lineart image
r, g, b, alpha = lineart_image.split()
alpha_np = np.array(alpha)
alpha_np[alpha_np < alpha_th] = 0
alpha_np[alpha_np >= alpha_th] = 255
new_alpha = Image.fromarray(alpha_np)
# Create a new image using the new color and the alpha channel from the original lineart
new_lineart_image = Image.merge('RGBA', (
Image.new('L', lineart_image.size, int(new_color[0])),
Image.new('L', lineart_image.size, int(new_color[1])),
Image.new('L', lineart_image.size, int(new_color[2])),
new_alpha
))
# Composite the new lineart image over the base image
composite_image = Image.alpha_composite(base_image, new_lineart_image)
return composite_image, alpha_np
def thicken_and_recolor_lines(base_image, lineart, thickness=3, new_color=(0, 0, 0)):
"""
Thicken the lines of a lineart image, recolor them, and composite onto another image,
while preserving the transparency of the original lineart.
Args:
base_image (PIL.Image): The base image to composite onto.
lineart (PIL.Image): The lineart image with transparent background.
thickness (int): The desired thickness of the lines.
new_color (tuple): The new color to apply to the lines (R, G, B).
Returns:
PIL.Image: The image with the recolored and thickened lineart composited on top.
"""
# Ensure both images are in RGBA format
if base_image.mode != 'RGBA':
base_image = base_image.convert('RGBA')
if lineart.mode != 'RGB':
lineart = lineart.convert('RGBA')
# Convert the lineart image to OpenCV format
lineart_cv = np.array(lineart)
white_pixels = np.sum(lineart_cv == 255)
black_pixels = np.sum(lineart_cv == 0)
lineart_gray = cv2.cvtColor(lineart_cv, cv2.COLOR_RGBA2GRAY)
if white_pixels > black_pixels:
lineart_gray = cv2.bitwise_not(lineart_gray)
# Thicken the lines using OpenCV
kernel = np.ones((thickness, thickness), np.uint8)
lineart_thickened = cv2.dilate(lineart_gray, kernel, iterations=1)
lineart_thickened = cv2.bitwise_not(lineart_thickened)
# Create a new RGBA image for the recolored lineart
lineart_recolored = np.zeros_like(lineart_cv)
lineart_recolored[:, :, :3] = new_color # Set new RGB color
lineart_recolored[:, :, 3] = np.where(lineart_thickened < 250, 255, 0) # Blend alpha with thickened lines
# Convert back to PIL Image
lineart_recolored_pil = Image.fromarray(lineart_recolored, 'RGBA')
# Composite the thickened and recolored lineart onto the base image
combined_image = Image.alpha_composite(base_image, lineart_recolored_pil)
return combined_image
def generate_distant_colors(consolidated_colors, distance_threshold):
"""
Generate new RGB colors that are at least 'distance_threshold' CIEDE2000 units away from given colors.
Args:
consolidated_colors (list of tuples): List of ((R, G, B), count) tuples.
distance_threshold (float): The minimum CIEDE2000 distance from the given colors.
Returns:
list of tuples: List of new RGB colors that meet the distance requirement.
"""
#new_colors = []
# Convert the consolidated colors to LAB
consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
# Try to find a distant color
max_attempts = 10000
for _ in range(max_attempts):
# Generate a random color in RGB and convert to LAB
random_rgb = np.random.randint(0, 256, size=3)
random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
for base_color_lab in consolidated_lab:
# Calculate the CIEDE2000 distance
distance = deltaE_ciede2000(base_color_lab, random_lab)
if distance <= distance_threshold:
break
new_color = tuple(random_rgb)
break
return new_color
def consolidate_colors(major_colors, threshold):
"""
Consolidate similar colors in the major_colors list based on the CIEDE2000 metric.
Args:
major_colors (list of tuples): List of ((R, G, B), count) tuples.
threshold (float): Threshold for CIEDE2000 color difference.
Returns:
list of tuples: Consolidated list of ((R, G, B), count) tuples.
"""
# Convert RGB to LAB
colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
n = len(colors_lab)
# Find similar colors and consolidate
i = 0
while i < n:
j = i + 1
while j < n:
delta_e = deltaE_ciede2000(colors_lab[i], colors_lab[j])
if delta_e < threshold:
# Compare counts and consolidate to the color with the higher count
if major_colors[i][1] >= major_colors[j][1]:
major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
major_colors.pop(j)
colors_lab.pop(j)
else:
major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
major_colors.pop(i)
colors_lab.pop(i)
n -= 1
continue
j += 1
i += 1
return major_colors
def get_major_colors(image, threshold_percentage=0.01):
"""
Analyze an image to find the major RGB values based on a threshold percentage.
Args:
image (PIL.Image): The image to analyze.
threshold_percentage (float): The percentage threshold to consider a color as major.
Returns:
list of tuples: A list of (color, count) tuples for colors that are more frequent than the threshold.
"""
# Convert image to RGB if it's not
if image.mode != 'RGB':
image = image.convert('RGB')
# Count each color
color_count = defaultdict(int)
for pixel in image.getdata():
color_count[pixel] += 1
# Total number of pixels
total_pixels = image.width * image.height
# Filter colors to find those above the threshold
major_colors = [(color, count) for color, count in color_count.items()
if (count / total_pixels) >= threshold_percentage]
return major_colors
def process(image, lineart, alpha_th):
org = image
major_colors = get_major_colors(image, threshold_percentage=0.05)
major_colors = consolidate_colors(major_colors, 10)
new_color_1 = generate_distant_colors(major_colors, 100)
image = thicken_and_recolor_lines(org, lineart, thickness=5, new_color=new_color_1)
major_colors.append((new_color_1, 0))
new_color_2 = generate_distant_colors(major_colors, 100)
image, alpha_np = recolor_lineart_and_composite(lineart, image, new_color_2, alpha_th)
image = replace_color(image, new_color_1, new_color_2, alpha_np)
return image