-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxai_concept_extraction.py
431 lines (345 loc) · 15.2 KB
/
xai_concept_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import numpy as np
import os
import tensorflow as tf
import matplotlib.pyplot as plt
from math import ceil
from sklearn.decomposition import NMF
import cv2
import xplique
from xplique.features_visualizations import Objective
from xplique.features_visualizations import maco
#from xplique.plot import plot_maco
from tqdm import tqdm
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
fossils_dir = '/cifs/data/tserre_lrs/projects/prj_fossils/data/2024/Florissant_Fossil_v2.0'
leaves_dir = '/cifs/data/tserre_lrs/projects/prj_fossils/data/2024/Extant_Leaves'
plot_save_dir = '/cifs/data/tserre_lrs/projects/prj_fossils_xai/concepts/fossils_concept'
plot_leaves_save_dir = '/cifs/data/tserre_lrs/projects/prj_fossils_xai/concepts/leaves_concept'
save_feature_viz = '/cifs/data/tserre_lrs/projects/prj_fossils_xai/maco/fossils_viz'
save_leaves_feature_viz = '/cifs/data/tserre_lrs/projects/prj_fossils_xai/maco/leaves_viz'
mask_dir = '/cifs/data/tserre_lrs/projects/prj_fossils_xai/mask_images_all_leaves2'
model_path = '/cifs/data/tserre_lrs/projects/prj_fossils_xai/new_models/model-14_RESNET_101_TRIPLET.h5'
classes = ['Anacardiaceae', 'Berberidaceae', 'Betulaceae', 'Cupressaceae', 'Dryopteridaceae', 'Fabaceae', 'Fagaceae', 'Juglandaceae', 'Lauraceae', 'Meliaceae', 'Myrtaceae', 'Pinaceae', 'Rhamnaceae', 'Rosaceae', 'Salicaceae', 'Sapindaceae']
cce = tf.keras.losses.categorical_crossentropy
model = tf.keras.models.load_model(model_path, custom_objects= {'cce': cce})
print(model.summary())
features = tf.keras.Model(model.input, model.layers[-5].output)
def load_fossils_dir(class_name, fossils_dir):
class_dir = os.path.join(fossils_dir, class_name)
paths = os.listdir(class_dir)
fossils = []
count = 0
for p in paths:
fossils_path = os.path.join(class_dir, p)
img = cv2.imread(fossils_path)[...,::-1]
img = img.astype(np.float32)
fossils.append(img)
count+=1
return fossils
def load_leaves_dir(class_name, leaves_dir, mask_dir):
mask_dir = os.path.join(mask_dir, class_name)
leaves_dir = os.path.join(leaves_dir, class_name)
paths = os.listdir(mask_dir)
masked_imgs = []
imgs = []
count = 0
for p in paths[:100]:
mask_path = os.path.join(mask_dir, p)
mask = cv2.imread(mask_path)/225.0
img = cv2.imread(image_dir + "/" + p)[...,::-1]
img = img.astype(np.float32)
image = img * (mask > 0.1).astype(np.float32)
masked_imgs.append(image)
imgs.append(img)
count+=1
return imgs, masked_imgs
def generate_square_crops(image, crop_size=1000):
height, width, _ = image.shape
crops = []
y_steps = ceil(height / crop_size)
x_steps = ceil(width / crop_size)
threshold = 0.9
for y in range(y_steps):
for x in range(x_steps):
start_y = y * crop_size
end_y = min(start_y + crop_size, height)
start_x = x * crop_size
end_x = min(start_x + crop_size, width)
# If we are at the end, take more from the other side
if end_y - start_y < crop_size:
start_y = max(0, end_y - crop_size)
if end_x - start_x < crop_size:
start_x = max(0, end_x - crop_size)
crop = image[start_y:end_y, start_x:end_x, :]
crops.append(crop)
return np.array(crops)
def preprocess(x):
return x/255.0
def get_importance(U, V, class_id):
return (W[:, class_id] @ V.T) * np.mean(U, 0)
def set_size(w,h):
plt.rcParams["figure.figsize"] = [w,h]
def show(img, **kwargs):
img = np.array(img).astype(np.float32)
img -= img.min()
img /= img.max()
plt.imshow(img, **kwargs)
plt.axis('off')
def plot_concept(u, crops, id):
best_idx = np.argsort(u[:, id])[::-1][:10]
for i in range(10):
plt.subplot(2, 5, i+1)
c = crops[best_idx[i]]
show(c)
h = U_big[best_idx[i]][:, :, id]
h = cv2.resize(h, (c.shape[0], c.shape[1]), interpolation=cv2.INTER_CUBIC)
h = h / h.max()
show(h, cmap='jet', alpha=0.25)
def save_concept(u, crops, id, concept_dir):
best_idx = np.argsort(u[:, id])[::-1][:10]
plt.tight_layout()
for i in range(10):
c = crops[best_idx[i]]
show(c)
h = U_big[best_idx[i]][:, :, id]
h = cv2.resize(h, (c.shape[0], c.shape[1]), interpolation=cv2.INTER_CUBIC)
h = h / h.max()
show(h, cmap='jet', alpha=0.25)
plt.savefig(f'{concept_dir}/{i}.png')
def plot_maco(image, alpha, percentile_image=0.5, percentile_alpha=85):
# visualize image with alpha mask overlay after normalization and clipping
image, alpha = check_format(image), check_format(alpha)
image = standardize_np(image)
image = normalize(image)
image = clip_percentile(image, percentile_image)
# mean of alpha across channels, clipping, and normalization
alpha = np.mean(alpha, -1, keepdims=True)
alpha = np.clip(alpha, None, np.percentile(alpha, percentile_alpha))
alpha = alpha / alpha.max()
#image = image * alpha
# overlay alpha mask on the image
plt.imshow(np.concatenate([image, alpha], -1))
plt.axis('off')
#plt.show()
def to_numpy(tensor):
# Ensure tensor is on CPU and convert to NumPy
return np.array(tensor).astype(np.float32)
def check_format(arr):
# ensure numpy array and move channels to the last dimension
# if they are in the first dimension
arr = to_numpy(arr)
if arr.shape[0] == 3:
return np.moveaxis(arr, 0, -1)
return arr
def normalize(image):
# normalize image to 0-1 range
image = np.array(image, dtype=np.float32)
image -= image.min()
image /= image.max()
return image
def standardize_np(image):
# normalize image to 0-1 range
image = np.array(image, dtype=np.float32)
image -= image.mean()
image /= (image.std()+1e-3)
return image
def clip_percentile(img, p=0.1):
# clip pixel values to specified percentile range
return np.clip(img, np.percentile(img, p), np.percentile(img, 100-p))
def show(img, **kwargs):
# display image with normalization and channels in the last dimension
img = check_format(img)
img = normalize(img)
plt.imshow(img, **kwargs)
plt.axis('off')
#plt.show()
def cosine_similarity(tensor_a, tensor_b):
# Calculate cosine similarity
norm_dims = list(range(1, len(tensor_a.shape)))
tensor_a = tf.math.l2_normalize(tensor_a, axis=norm_dims)
tensor_b = tf.math.l2_normalize(tensor_b, axis=norm_dims)
return tf.reduce_sum(tensor_a * tensor_b, axis=norm_dims)
def dot_cossim(tensor_a, tensor_b, cossim_pow=2.0):
# Compute dot product scaled by cosine similarity
cosim = tf.math.pow(tf.clip_by_value(cosine_similarity(tensor_a, tensor_b), 1e-1, 1.0), cossim_pow)
dot = tf.reduce_sum(tensor_a * tensor_b)
return dot * cosim
# tensor for color correlation svd square root
color_correlation_svd_sqrt = tf.constant(
[[0.56282854, 0.58447580, 0.58447580],
[0.19482528, 0.00000000, -0.19482528],
[0.04329450, -0.10823626, 0.06494176]],
dtype=tf.float32
)
def standardize(tensor):
# standardizes the tensor to have 0 mean and unit variance
tensor = tensor - tf.reduce_mean(tensor)
tensor = tensor / (tf.math.reduce_std(tensor) + 1e-4)
return tensor
def recorrelate_colors(image):
# recorrelates the colors of the images
assert len(image.shape) == 3
assert image.shape[-1] == 3
flat_image = tf.reshape(image, [-1, 3])
recorrelated_image = tf.matmul(flat_image, color_correlation_svd_sqrt)
recorrelated_image = tf.reshape(recorrelated_image, image.shape)
return recorrelated_image
def batch_half_grayscale(images):
batch_size = tf.shape(images)[0]
mid_point = batch_size // 2
grayscale_images = tf.image.rgb_to_grayscale(images[:mid_point])
grayscale_images = tf.tile(grayscale_images, [1, 1, 1, 3])
output_images = tf.concat([grayscale_images, images[mid_point:]], axis=0)
return output_images
@tf.function
def optimization_step(objective_function, image, box_size, noise_level, number_of_crops_per_iteration, model_input_size):
# performs an optimization step on the generated image
assert box_size[1] >= box_size[0]
assert len(image.shape) == 3
assert image.shape[-1] == 3
# generate random boxes
x0 = 0.5 + tf.random.normal((number_of_crops_per_iteration,)) * 0.15
y0 = 0.5 + tf.random.normal((number_of_crops_per_iteration,)) * 0.15
delta_x = tf.random.uniform((number_of_crops_per_iteration,)) * (box_size[1] - box_size[0]) + box_size[0]
delta_y = delta_x
box_indices = tf.zeros(shape=(number_of_crops_per_iteration,), dtype=tf.int32)
boxes = tf.stack([x0 - delta_x * 0.5,
y0 - delta_y * 0.5,
x0 + delta_x * 0.5,
y0 + delta_y * 0.5], -1)
crops = tf.image.crop_and_resize(image[None, :, :, :], boxes, box_indices,
(model_input_size, model_input_size))
score = objective_function(crops)
loss = -score
return loss, image
def fft_2d_freq(width: int, height: int) -> np.ndarray:
freq_y = np.fft.fftfreq(height)[:, np.newaxis].astype(np.float64)
cut_off = int(width % 2 == 1)
freq_x = np.fft.fftfreq(width)[:width//2+1+cut_off]
return np.sqrt(freq_x**2 + freq_y**2)
def get_fft_scale(width: int, height: int, decay_power: float = 1.0) -> tf.Tensor:
frequencies = fft_2d_freq(width, height)
fft_scale = 1.0 / np.maximum(frequencies, 1.0 / max(width, height)) ** decay_power
fft_scale = fft_scale * np.sqrt(width * height)
return tf.cast(fft_scale, dtype=tf.complex64)
def init_olah_buffer(width, height, std=1e-3):
# Initialize the Olah buffer with a random spectrum
spectrum_shape = (3, width, height // 2 + 1)
random_spectrum = tf.complex(tf.random.normal(spectrum_shape) * std, tf.random.normal(spectrum_shape) * std)
return random_spectrum
def fourier_preconditioner(spectrum, spectrum_scaler, values_range):
# Precondition the Fourier spectrum and convert it to spatial domain
assert spectrum.shape[0] == 3
#spectrum = standardize_complex(spectrum)
spectrum = spectrum * spectrum_scaler
spatial_image = tf.signal.irfft2d(spectrum)
spatial_image = tf.transpose(spatial_image, [1,2,0])
image = spatial_image
image = standardize(image) / 2.0
image = recorrelate_colors(image)
#color_recorrelated_image = spatial_image
#image = spatial_image
#image = color_recorrelated_image
image = tf.nn.sigmoid(image)
#image = image - tf.reduce_min(image)
#image = image / (tf.reduce_max(image) + 1e-3)
image = image * (values_range[1] - values_range[0]) + values_range[0]
#image = tf.sigmoid(image) * (values_range[1] - values_range[0]) + values_range[0]
#mean = tf.reduce_mean(image, (0, 1))
#image = image - (image - mean[None, None, :]) * 0.5
#image = image * (values_range[1] - values_range[0]) + values_range[0]
return image
def fourier(objective_function, decay_power=1.5, total_steps=1000, learning_rate=1.0, image_size=1280, model_input_size=384,
noise=0.08, values_range=(-0.1, 1.1), crops_per_iteration=8, box_size=(0.15, 0.25), device='/GPU:0'):
# Perform the Olah optimization process
assert values_range[1] >= values_range[0]
assert box_size[1] >= box_size[0]
spectrum = init_olah_buffer(image_size, image_size, std=1.0)
spectrum_scaler = get_fft_scale(image_size, image_size, decay_power)
with tf.device(device):
spectrum = tf.Variable(spectrum)
optimizer = tf.optimizers.Nadam(learning_rate=learning_rate)
transparency_accumulator = tf.zeros((image_size, image_size, 3), dtype=tf.float32)
@tf.function
def sstep(spectrum):
with tf.GradientTape() as tape:
tape.watch(spectrum)
image = fourier_preconditioner(spectrum, spectrum_scaler, values_range)
tape.watch(image)
#set_size(1, 1)
#show(image)
#plt.show()
loss, _ = optimization_step(objective_function, image, box_size, noise, crops_per_iteration, model_input_size)
grads_spec, grads_image = tape.gradient(loss, [spectrum, image])
#grads_spec = tape.gradient(loss, spectrum)
return grads_spec, grads_image, image
#return grads_spec, None, image
for step in tqdm(range(total_steps)):
grads_spec, grads_image, image = sstep(spectrum)
#print('grads spec?', grads_spec.shape)# 'grads img?', grads_image.shape)
#if step % 200 == 0:
# set_size(3, 3)
# plt.imshow(image / 2.0 + 0.5)
# plt.axis('off')
# plt.show()
optimizer.apply_gradients(zip([grads_spec], [spectrum]))
transparency_accumulator += tf.abs(grads_image)
final_image = fourier_preconditioner(spectrum, spectrum_scaler, values_range)
return final_image, transparency_accumulator
for i in range(len(classes)):
class_id = i
nb_concepts = 40
CROPS = []
ACTIVATIONS = []
class_save_dir_c = os.path.join(plot_save_dir, classes[class_id], 'coalesce')
class_save_dir_ind = os.path.join(plot_save_dir, classes[class_id], 'individual')
class_viz_dir = os.path.join(save_feature_viz, classes[class_id])
os.makedirs(class_save_dir_c, exist_ok = True)
os.makedirs(class_save_dir_ind, exist_ok = True)
os.makedirs(class_viz_dir, exist_ok = True)
print(f'Fossils Dir: {fossils_dir}')
print(f'Plot Dir: {plot_save_dir}')
print(f'Class Save Dir: {class_save_dir_c}')
print(f'class save dir ind: {class_save_dir_ind}')
print(f'ViZ dir: {class_viz_dir}')
X = load_fossils_dir(classes[class_id], fossils_dir)
count = 0
for i,x in enumerate(X):
crops = generate_square_crops(x)
crops = tf.image.resize(crops, (384, 384))
CROPS += list(crops.numpy().astype(np.uint8))
crops = preprocess(crops)
activations = features(crops)
ACTIVATIONS += list(activations.numpy())
count+=1
ACTIVATIONS = np.array(ACTIVATIONS)
print(ACTIVATIONS.shape)
nmf = NMF(n_components = nb_concepts, init = 'random', random_state = 0)
A = np.array(np.mean(ACTIVATIONS, (1,2)))
U = nmf.fit_transform(A)
V = nmf.components_
W = np.array(model.layers[-1].weights[0])
imp = get_importance(U,V, class_id)
U_big = nmf.transform(ACTIVATIONS.reshape((-1, 2048)))
U_big = U_big.reshape((-1, 12, 12, nb_concepts))
#set_size(7, 4)
most_important_concept = np.argsort(imp)[::-1][:10]
import ipdb;ipdb.set_trace()
for mic in most_important_concept:
importance_val = imp[mic]/np.sum(imp)
concept_dir = os.path.join(class_save_dir_ind, f'{mic}_{importance_val}')
os.makedirs(concept_dir, exist_ok = True)
save_concept(U, CROPS, mic, concept_dir)
set_size(10, 10)
for j in range(10):
v = V[[most_important_concept[j]]][None, :]
def objective(images):
a = features(images)
a = tf.reduce_mean(a, (1,2))
y = dot_cossim(a, v)
return tf.reduce_mean(y)
image, alpha = fourier(objective, total_steps=1280, image_size=3000,learning_rate=0.1, decay_power=1.75, noise=0.00,box_size=(0.10, 0.30), values_range=(0.1, 0.9))
plot_maco(image, alpha)
plt.savefig(f'{class_viz_dir}/{classes[class_id]}_concept_{most_important_concept[j]}.png', dpi=400, bbox_inches='tight',transparent=True, pad_inches=0)
plt.clf()
plt.close()