-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation_runner.py
131 lines (106 loc) · 6.47 KB
/
simulation_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import yaml
from algo.algo_interface import BaseAlgoInterface
from elevator.elevator import Elevator
from demand_simulation_data.load_simulation_data import load_simulation_events
from monitoring.performance_monitor import PerformanceMonitor
class SimulationRunner(object):
def __init__(self, simulation_filename, algo_class, elevator_config_filename):
with open(elevator_config_filename, 'rb') as f:
self.conf = yaml.load(f, Loader=yaml.FullLoader)
elevator_conf = self.conf["ELEVATOR"]
self.elevator = Elevator(elevator_conf)
self.simulation_events = load_simulation_events(simulation_filename)
self.max_floor = max(set([a["source_floor"] for a in self.simulation_events] +
[a["destination_floor"] for a in self.simulation_events]))
self.algo_class = algo_class
self.algo = BaseAlgoInterface.get_algo(self.algo_class, elevator_conf, self.max_floor)
self.performance_monitor = PerformanceMonitor(self.max_floor)
self.current_ts = 0
self.current_location = None
self.rider_id_to_dropoff_location_map = {}
self.active_riders_pickup_map = {}
self.active_riders_dropoff_map = {}
self.next_event_index = 0
def get_algo_name(self):
return self.algo.get_algo_name()
def _rerun_algo_with_new_pickup(self, current_ts, current_location, sim_event):
self.algo.elevator_heartbeat(current_ts, current_location)
event_data = self.algo.convert_event_for_rider_registration(sim_event["source_floor"],
sim_event["destination_floor"])
algo_output_tasks = self.algo.register_rider_source(sim_event["rider_id"], *event_data)
self.elevator.register_next_tasks(algo_output_tasks)
def _rerun_algo_with_new_dropoff(self, current_ts, current_location, rider_id, destination_floor):
self.algo.elevator_heartbeat(current_ts, current_location)
algo_output_tasks = self.algo.register_rider_destination(rider_id, destination_floor)
self.elevator.register_next_tasks(algo_output_tasks)
def _record_all_rider_requests(self):
# Loop over all riders registering at the same time
while self.next_event_index < len(self.simulation_events) and \
self.simulation_events[self.next_event_index]["timestamp"] == self.current_ts:
sim_event = self.simulation_events[self.next_event_index]
rider_id = sim_event["rider_id"]
source_floor = sim_event["source_floor"]
destination_floor = sim_event["destination_floor"]
self.performance_monitor.rider_request(self.current_ts, rider_id, source_floor,
destination_floor, self.current_location)
self._rerun_algo_with_new_pickup(self.current_ts,
self.current_location,
sim_event)
self.active_riders_pickup_map[rider_id] = source_floor
self.rider_id_to_dropoff_location_map[rider_id] = destination_floor
self.next_event_index += 1
def _handle_rider_pickup(self):
picked_up_rider_ids = \
[a for a in self.active_riders_pickup_map.keys()
if self.active_riders_pickup_map[a] == self.current_location]
for rider_id in picked_up_rider_ids:
self.performance_monitor.rider_pickup(self.current_ts, rider_id, self.current_location)
algo_output_tasks = self.algo.report_rider_pickup(self.current_ts, rider_id)
self.elevator.register_next_tasks(algo_output_tasks)
dropoff_floor = self.rider_id_to_dropoff_location_map[rider_id]
self.active_riders_dropoff_map[rider_id] = dropoff_floor
self._rerun_algo_with_new_dropoff(self.current_ts,
self.current_location,
rider_id,
dropoff_floor)
del self.active_riders_pickup_map[rider_id]
def _handle_rider_dropoff(self):
dropped_off_rider_ids = \
[a for a in self.active_riders_dropoff_map.keys() if
self.active_riders_dropoff_map[a] == self.current_location]
for rider_id in dropped_off_rider_ids:
self.performance_monitor.rider_dropoff(self.current_ts, rider_id, self.current_location)
algo_output_tasks = self.algo.report_rider_dropoff(self.current_ts, rider_id)
self.elevator.register_next_tasks(algo_output_tasks)
del self.active_riders_dropoff_map[rider_id]
def run_simulation(self):
# Keep running the simulation as long as there are still future events or there are still incomplete rides
while self.next_event_index < len(self.simulation_events) \
or self.active_riders_pickup_map or self.active_riders_dropoff_map:
# Are there any more tasks?
if self.next_event_index < len(self.simulation_events):
next_event_ts = self.simulation_events[self.next_event_index]["timestamp"]
else:
# If there are no more sim event coming up, just let the elevator run until all tasks are completed
next_event_ts = None
if self.elevator.is_task_list_empty():
break
self.elevator.run_to_next_task_or_max_ts(max_timestamp=next_event_ts)
self.current_ts, self.current_location = self.elevator.get_status()
# A new rider(s) is being registered
if self.current_ts == next_event_ts:
self._record_all_rider_requests()
# A pickup point is reached, register the rider's dropoff
if self.current_location in self.active_riders_pickup_map.values():
self._handle_rider_pickup()
# A dropoff point is reached
if self.current_location in self.active_riders_dropoff_map.values():
self._handle_rider_dropoff()
# Log all floors visited
self.performance_monitor.floors_visited(self.elevator.get_ts_to_arrival_floor_log())
def write_visualization_data_file(self):
self.performance_monitor.write_visualization_data_file()
def get_performance_stats(self):
return self.performance_monitor.calculate_performace_stats()
def print_performance_stats(self):
self.performance_monitor.print_performance_stats()