-
Notifications
You must be signed in to change notification settings - Fork 0
/
通用版本.py
117 lines (100 loc) · 4.61 KB
/
通用版本.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import pandas as pd
from keras import callbacks
from keras.models import load_model
import keras
import keras.optimizers as opt
from keras import Input, layers
from keras.models import Model
import matplotlib.pyplot as plt
import keras.backend as K
city = "E"
def sort(df):
df = df.sort_values(by=["区域", "日期"])
print(df)
print(list(set(df["区域"])) == list(range(0, max(df["区域"]) + 1)))
df.to_csv("infection_{}.csv".format(city), header=False, index=False)
def RMSLE(y_true,y_pred):
first_log=K.log(K.clip(y_pred,K.epsilon(),None)+1.)
second_log=K.log(K.clip(y_true,K.epsilon(),None)+1.)
return K.sqrt(K.mean(K.square(first_log-second_log)))
df = pd.read_csv("infection_{}.csv".format(city), names=["城市", "区域", "日期", "增加人数"])
df = df.drop(columns=["城市", "日期"])
for i in range(0,34):
callback_list = [
callbacks.EarlyStopping(monitor="loss", patience=60),
# callbacks.ModelCheckpoint(filepath="A_{}_v4.h5".format(i), monitor="loss", save_best_only=True),
callbacks.ReduceLROnPlateau(monitor="loss", factor=0.8, verbose=1, patience=12)
]
area = df[df["区域"] == i]
area = area.reset_index()
area["index"] = (area["index"]) % 45 + 1
area.columns = ["天数", "区域", "增加人数"]
train_data = area["天数"]
train_data = np.array(train_data)
target = area["增加人数"]
target = np.array(target)
xr = dict()
for j in range(20):
model__1 = load_model("toy_v5_A.h5")
model__1.trainable = False
model__1.name = "model_1"
data_input = Input(shape=(1,))
x = layers.BatchNormalization()(data_input)
x = layers.Dense(32, activation="relu")(x)
y = layers.Dense(64, activation="relu")(x)
# y = layers.Dense(64, activation="relu")(y)
y = layers.Dense(32, activation="relu")(y)
x = layers.add([x, y])
y = layers.Dense(64, activation="relu")(x)
# y = layers.Dense(64, activation="relu")(y)
y = layers.Dense(32, activation="relu")(y)
x = layers.add([x, y])
y = layers.Dense(64, activation="relu")(x)
# y = layers.Dense(64, activation="relu")(y)
y = layers.Dense(32, activation="relu")(y)
x = layers.add([x, y])
y = layers.Dense(64, activation="relu")(x)
# y = layers.Dense(64, activation="relu")(y)
y = layers.Dense(32, activation="relu")(y)
x = layers.add([x, y])
y = layers.Dense(16, activation="relu")(x)
y = layers.Dense(1)(y)
predict_3 = layers.normalization.BatchNormalization()(y)
model__2 = Model(inputs=data_input, outputs=predict_3)
model__2.name = "model_2"
data_input = Input(shape=(1,))
z = layers.Dense(64)(data_input)
predict_3 = layers.Dense(1)(z)
model__3 = Model(data_input, predict_3)
model__3.name = "model_3"
ensemble_input = keras.Input(shape=(1,))
ensemble_output = model__3(model__1(model__2(ensemble_input)))
ensemble_model = Model(ensemble_input, ensemble_output)
ensemble_model.compile(optimizer=opt.adam(), loss="mse")
ensemble_model.fit(train_data, target, epochs=7000, batch_size=45, callbacks=callback_list)
y = ensemble_model.predict(train_data)
y = y.reshape((45,))
print(((y - target) ** 2).mean())
print([i] * 50)
xr[((y - target) ** 2).mean()] = ensemble_model
ensemble_model = xr[min(xr, key=lambda x: x)]
x_test = np.arange(46, 76, 1)
y_test = ensemble_model.predict(x_test)
y_test = np.where(y_test >= 0, y_test, 0)
result = np.concatenate((x_test.reshape(30, 1), y_test.reshape(30, 1)), axis=1)
predict_em = ensemble_model.predict(np.arange(1, 76)).reshape(75, )
predict_em = np.where(predict_em >= 0, predict_em, 0)
plt.figure()
plt.plot(np.arange(1, 76), predict_em, label="train_model")
plt.plot(train_data, target, label="data")
plt.legend(loc="best")
plt.savefig("F:\emsenble_{}\{}城{}区拟合.png".format(city,city,str(i)))
if (i == 0):
result_final = pd.DataFrame(result, index=[i] * result.shape[0], columns=["天数", "感染人数"])
result_final.to_csv("predict_bei_{}.csv".format(city), columns=["天数", "感染人数"])
else:
result_final = pd.read_csv("predict_bei_{}.csv".format(city), names=["天数", "感染人数"])
result = pd.DataFrame(result, index=[i] * result.shape[0], columns=["天数", "感染人数"])
result_final = pd.concat([result_final, result])
result_final.to_csv("predict_bei_{}.csv".format(city), columns=["天数", "感染人数"])