forked from suhas-srinath/GRepQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
157 lines (119 loc) · 5.67 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import traceback
import datetime
import torch
import time
class GroupContrastiveLoss(nn.Module):
def __init__(self, batch_size, temperature=0.5):
super().__init__()
self.batch_size = batch_size
self.register_buffer("temperature", torch.tensor(temperature))
self.register_buffer("negatives_mask", (~torch.eye(batch_size * 2, batch_size * 2, dtype=bool)).float())
self.register_buffer("positives_mask", (~torch.eye(batch_size * 1, batch_size * 1, dtype=bool)).float())
def forward(self, emb_i, emb_j):
"""
emb_i and emb_j are batches of embeddings, where corresponding indices are pairs
z_i, z_j as per SimCLR paper
"""
self.negatives_mask[:len(emb_i), :len(emb_j)] = False
self.negatives_mask[len(emb_i):, len(emb_j):] = False
z_i = F.normalize(emb_i, dim=1)
z_j = F.normalize(emb_j, dim=1)
representations = torch.cat([z_i, z_j], dim=0)
similarity_matrix = F.cosine_similarity(representations.unsqueeze(1), representations.unsqueeze(0), dim=2).cuda()
pos_similarity_matrix = similarity_matrix[:len(emb_i), :len(emb_j)].cuda()
neg_similarity_matrix = similarity_matrix[len(emb_i):, len(emb_j):].cuda()
pos_similarity_matrix = pos_similarity_matrix * self.positives_mask
sim_ij=torch.sum(pos_similarity_matrix,dim=1)/(len(neg_similarity_matrix)-1)
neg_similarity_matrix = neg_similarity_matrix * self.positives_mask
sim_ji = torch.sum(neg_similarity_matrix, dim=1)/(len(neg_similarity_matrix)-1)
positives = torch.cat([sim_ij, sim_ji], dim=0)
numerator = torch.exp(positives / self.temperature)
denominator = self.negatives_mask * torch.exp(similarity_matrix / self.temperature)
loss_partial = -torch.log(numerator / (numerator + torch.sum(denominator, dim=1)))
loss = torch.sum(loss_partial) / (2 * self.batch_size)
return loss
def weighted_contrastive_loss(features_images, features_augmentations, tau, annotator_matrices, mode_in=True):
"""
Weighted contrastive loss (one sided). If mode_in is set to True, Lin is invoked as the loss, otherwise Lout.
These losses correspond to the expressions as per supervised contrastive learning
in https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf.
Both features of shape (B, D, C), where C is the feature length, D is the number of distortions. A batch of
annotator_matrices of shape (B, D, D).
"""
# Normalizing all features with l2 norm
eps = 1e-8 # for computational stability
norm_images = torch.linalg.norm(features_images, dim=-1)
norm_augmentations = torch.linalg.norm(features_augmentations, dim=-1)
norm_images = torch.max(norm_images, eps * torch.ones_like(norm_images))
norm_augmentations = torch.max(norm_augmentations, eps * torch.ones_like(norm_augmentations))
normalized_features_images = features_images/norm_images.unsqueeze(dim=-1)
normalized_features_augmentations = features_augmentations/norm_augmentations.unsqueeze(dim=-1)
# Computing loss for pairs
feat_distances = torch.bmm(normalized_features_images, torch.transpose(normalized_features_augmentations, dim0=1, dim1=2)) / tau # (B, 1)
alpha = 2.0 - 2.0 / (1 + annotator_matrices ** 2)
term_pos = alpha * torch.exp(feat_distances)
term_neg = torch.exp(feat_distances)
# Choosing Lin or Lout as the training loss
if mode_in:
loss1 = torch.divide(term_pos.sum(-1), term_neg.sum(-1))
loss1 = -torch.log(loss1)
loss1 = loss1.mean()
loss2 = torch.divide(term_pos.sum(-2), term_neg.sum(-2))
loss2 = -torch.log(loss2)
loss2 = loss2.mean()
loss = loss1 + loss2
else:
loss1 = - alpha * (torch.log(term_neg) - torch.log(term_neg.sum(-1))[:,:,None])
loss2 = - alpha * (torch.log(term_neg) - torch.log(term_neg.sum(-2))[:,None])
loss = loss1.mean() + loss2.mean()
return loss
# Testing the quality aware contrastive loss
def test_qacl():
ssim = torch.tril(torch.rand(5, 9, 9), diagonal=-1)
ssim = ssim + torch.transpose(ssim, dim0=1, dim1=2) # To get full matrix from lower triangular matrix
ssim = torch.exp(-ssim)
feat1 = torch.rand(5, 9, 128)
feat2 = torch.rand(5, 9, 128)
losses = weighted_contrastive_loss(feat1, feat2, 0.2, ssim)
print(losses)
return
# Testing the group contrastive loss
def test_gcl():
pseudo_labels=torch.rand(16,1)
f_feat=torch.rand(16,256)
batch_size = 16
idx = np.argsort(pseudo_labels.cpu(), axis=0)
f_pos_feat = []
f_neg_feat = []
for n in range( batch_size // 4):
try:
f_pos_feat.append(f_feat[idx[n]])
f_neg_feat.append(f_feat[idx[-n - 1]])
except:
continue
f_pos_feat = torch.squeeze(torch.stack(f_pos_feat), dim=1)
f_neg_feat = torch.squeeze(torch.stack(f_neg_feat), dim=1)
loss_fn = GroupContrastiveLoss(f_pos_feat.shape[0], 1).cuda()
loss = loss_fn(f_neg_feat, f_pos_feat)
print(loss)
return
def main():
test_qacl()
# test_gcl()
return
if __name__ == '__main__':
print('Program started at ' + datetime.datetime.now().strftime('%d/%m/%Y %I:%M:%S %p'))
start_time = time.time()
try:
main()
run_result = 'Program completed successfully!'
except Exception as e:
print(e)
traceback.print_exc()
run_result = str(e)
end_time = time.time()
print('Program ended at ' + datetime.datetime.now().strftime('%d/%m/%Y %I:%M:%S %p'))
print('Execution time: ' + str(datetime.timedelta(seconds=end_time - start_time)))