Skip to content

shabbychef/mazealls

Repository files navigation

mazealls

Build Status codecov.io CRAN Downloads Total Rdoc License: LGPL v3

Sometimes magic is just someone spending more time on something than anyone else might reasonably expect. -- Teller

Generate mazes recursively via Turtle graphics.

-- Steven E. Pav, shabbychef@gmail.com

Installation

This package can be installed from CRAN, via drat, or from github:

# via CRAN:
install.packages("mazealls")
# via drat:
if (require(drat)) {
    drat:::add("shabbychef")
    install.packages("mazealls")
}
# get snapshot from github (may be buggy)
if (require(devtools)) {
    install_github("shabbychef/mazealls")
}

parallelogram maze

The simplest maze to generate recursively is a parallelogram. One can generate a parallelogram maze by splitting the domain into two parts by an arbitrary cut line with a hole in it, and then recursively creating mazes on both parts. Unlike some shapes, this method applies for arbitrary (integral) side lengths, where by 'length' we mean in units of 'hallway widths', what we call the unit_len in the API. Here is a simple parallelogram maze:

library(TurtleGraphics)
library(mazealls)
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 400)
    turtle_right(90)
    parallelogram_maze(angle = 90, unit_len = 10, width = 75, 
        height = 55, method = "uniform", draw_boundary = TRUE)
})

plot of chunk para-maze

The parallelogram_maze function admits a balance parameter which controls how the maze should be recursively subdivided. A negative value creates imbalanced mazes, while positive values create more uniform mazes. In the example below we create seven mazes side by side with an increasing balance parameter:

library(TurtleGraphics)
library(mazealls)
turtle_init(2000, 2000)
turtle_hide()
turtle_up()
turtle_do({
    turtle_left(90)
    turtle_forward(930)
    turtle_right(90)
    valseq <- seq(from = -1.5, to = 1.5, length.out = 7)
    blines <- c(1, 2, 3, 4)
    bholes <- c(1, 3)
    set.seed(1234)
    for (iii in seq_along(valseq)) {
        parallelogram_maze(angle = 90, unit_len = 12, 
            width = 22, height = 130, method = "two_parallelograms", 
            draw_boundary = TRUE, balance = valseq[iii], 
            end_side = 3, boundary_lines = blines, 
            boundary_holes = bholes)
        turtle_right(180)
        blines <- c(2, 3, 4)
        bholes <- c(3)
    }
})

plot of chunk para-imbalance-fade

triangle maze

An equilateral triangle maze can be constructed in a number of different ways:

  1. Create four equilateral mazes with lines with holes between them. This only works if the side length of the original is a power of two.
  2. Cut out a parallelogram and attach two equilateral triangles. Again only if the side length is a power of two.
  3. Create an isosceles trapezoid maze, then stack an equilateral triangle on top of it. This only works if the side length is even.
  4. Create a regular hexagonal maze and three equilateral mazes in the corners. This only works if the side length of the original triangle is divisible by three.
  5. Shave off a single hallway and create an equilateral triangular maze of side length one less than the original.

I illustrate them here:

library(TurtleGraphics)
library(mazealls)
# uniform method
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    eq_triangle_maze(depth = 6, unit_len = 12, method = "uniform", 
        draw_boundary = TRUE)
})

plot of chunk eq-tri-uniform

library(TurtleGraphics)
library(mazealls)
# stacked trapezoids
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    eq_triangle_maze(depth = 6, unit_len = 12, method = "stack_trapezoids", 
        draw_boundary = TRUE)
})

plot of chunk eq-tri-stack

library(TurtleGraphics)
library(mazealls)
# four triangles
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    eq_triangle_maze(depth = 6, unit_len = 12, method = "triangles", 
        draw_boundary = TRUE)
})

plot of chunk eq-tri-four-tri

library(TurtleGraphics)
library(mazealls)
# two ears
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    eq_triangle_maze(depth = 6, unit_len = 12, method = "two_ears", 
        draw_boundary = TRUE)
})

plot of chunk eq-tri-two-ears

library(TurtleGraphics)
library(mazealls)
# hex and three
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    eq_triangle_maze(depth = log2(66), unit_len = 12, 
        method = "hex_and_three", draw_boundary = TRUE)
})

plot of chunk eq-tri-hex-and-three

library(TurtleGraphics)
library(mazealls)
# shave
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    eq_triangle_maze(depth = log2(66), unit_len = 12, 
        method = "shave", draw_boundary = TRUE)
})

plot of chunk eq-tri-shave

library(TurtleGraphics)
library(mazealls)
# shave all
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    eq_triangle_maze(depth = log2(66), unit_len = 12, 
        method = "shave_all", draw_boundary = TRUE, 
        boustro = c(35, 2))
})

plot of chunk eq-tri-shave-all

hexagon maze

An regular hexagonal maze can be constructed in a number of different ways:

  1. Decompose the hexagon as 6 equilateral triangle mazes, with one solid line and five lines with holes dividing them.
  2. Create two isosceles trapezoid mazes with long sides joined by a line with a hole.
  3. Create three parallelogram mazes with one solid line and two lines with holes dividing them.
library(TurtleGraphics)
library(mazealls)
# two trapezoids
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    hexagon_maze(depth = 5, unit_len = 12, method = "two_trapezoids", 
        draw_boundary = TRUE)
})

plot of chunk hex-trapezoids

library(TurtleGraphics)
library(mazealls)
# six triangles
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    hexagon_maze(depth = 5, unit_len = 12, method = "six_triangles", 
        draw_boundary = TRUE, boundary_hole_arrows = TRUE)
})

plot of chunk hex-triangles

library(TurtleGraphics)
library(mazealls)
# six triangles
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    hexagon_maze(depth = 5, unit_len = 12, method = "three_parallelograms", 
        draw_boundary = TRUE, boundary_hole_arrows = TRUE)
})

plot of chunk hex-parallelo

dodecagon maze

A dodecagon can be dissected into a hexagon and a ring of alternating squares and equilateral triangles:

library(TurtleGraphics)
library(mazealls)
# dodecagon
turtle_init(2200, 2200, mode = "clip")
turtle_hide()
turtle_up()
turtle_do({
    turtle_setpos(80, 1100)
    turtle_setangle(0)
    dodecagon_maze(depth = log2(27), unit_len = 20, 
        draw_boundary = TRUE, boundary_holes = c(1, 
            7))
})

plot of chunk simple-dodecagon

trapezoid maze

An isosceles trapezoid maze can be constructed in a number of different ways:

  1. Decompose as four trapezoidal mazes with a 'bone' shape between them consisting of two solid lines and three lines with holes.
  2. Decompose as a parallelogram and an equilateral triangle with a line with holes between them
library(TurtleGraphics)
library(mazealls)
# four trapezoids
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    iso_trapezoid_maze(depth = 5, unit_len = 12, method = "four_trapezoids", 
        draw_boundary = TRUE)
})

plot of chunk trap-four

library(TurtleGraphics)
library(mazealls)
# one ear
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 300)
    turtle_right(90)
    iso_trapezoid_maze(depth = 5, unit_len = 12, method = "one_ear", 
        draw_boundary = TRUE)
})

plot of chunk trap-ear

Rhombic Dissections

Regular 2n gons usually admit a dissection into rhombuses. Sometimes, however, these have extremely acute angles, which do not translate into nice mazes. At the moment, there is only support for octagons, and decagons. While a dodecagon would also admit such a dissection, this would require extremely acute angles which would make an ugly maze.

library(TurtleGraphics)
library(mazealls)
# octagon
turtle_init(2000, 2000, mode = "clip")
turtle_hide()
turtle_up()
turtle_do({
    turtle_setpos(75, 1000)
    turtle_setangle(0)
    octagon_maze(log2(48), 16, draw_boundary = TRUE, 
        boundary_holes = c(1, 5))
})

plot of chunk simple-octagon

library(TurtleGraphics)
library(mazealls)
# decagon
turtle_init(2200, 2200, mode = "clip")
turtle_hide()
turtle_up()
turtle_do({
    turtle_setpos(60, 1100)
    turtle_setangle(0)
    decagon_maze(5, 21, draw_boundary = TRUE, boundary_holes = c(1, 
        6))
})

plot of chunk simple-decagon

Fractal mazes

Koch snowflake maze

Everyone's favorite snowflake can also be a maze. Simply fill in triangle bumps with triangular mazes and create lines with holes as needed:

library(TurtleGraphics)
library(mazealls)
# koch flake
turtle_init(1000, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 200)
    turtle_right(90)
    turtle_backward(distance = 300)
    koch_maze(depth = 4, unit_len = 8)
})

plot of chunk koch-flake

Koch flakes of different sizes tile the plane:

library(TurtleGraphics)
library(mazealls)
# koch flake
turtle_init(2000, 2000, mode = "clip")
turtle_up()
turtle_hide()
turtle_do({
    turtle_setpos(450, 1000)
    turtle_setangle(60)
    ul <- 12
    dep <- 4
    koch_maze(depth = dep, unit_len = ul, clockwise = TRUE, 
        draw_boundary = FALSE)
    turtle_left(30)
    turtle_col("gray40")
    dropdown <- 1
    for (iii in c(1:6)) {
        if (iii == 1) {
            bholes <- c(1, 2)
        } else if (iii == 4) {
            bholes <- c(1, 3)
        } else {
            bholes <- c(1)
        }
        koch_maze(depth = dep - dropdown, unit_len = ul * 
            (3^(dropdown - 0.5)), clockwise = FALSE, 
            draw_boundary = TRUE, boundary_holes = bholes, 
            boundary_hole_arrows = c(2, 3))
        turtle_forward(3^(dep - 1) * ul * sqrt(3))
        turtle_right(60)
    }
})

plot of chunk koch-meta-flake

Sierpinski Triangle

Similarly, one can construct a maze in a Sierpinski triangle.

library(TurtleGraphics)
library(mazealls)
turtle_init(2500, 2500, mode = "clip")
turtle_up()
turtle_hide()
turtle_do({
    turtle_setpos(50, 1250)
    turtle_setangle(0)
    sierpinski_maze(unit_len = 19, depth = 7, draw_boundary = TRUE, 
        boundary_lines = TRUE, boundary_holes = c(1, 
            3), color1 = "black", color2 = "gray60")
})

plot of chunk sierpinski

Sierpinski Carpet

And a Sierpinski Carpet:

library(TurtleGraphics)
library(mazealls)
turtle_init(800, 1000)
turtle_up()
turtle_hide()
turtle_do({
    turtle_setpos(50, 450)
    turtle_setangle(0)
    sierpinski_carpet_maze(angle = 80, unit_len = 8, 
        width = 90, height = 90, draw_boundary = TRUE, 
        boundary_holes = c(1, 3), balance = 1.5, color2 = "green")
})

plot of chunk sierpinski-carpet

library(TurtleGraphics)
library(mazealls)
turtle_init(2000, 2000, mode = "clip")
turtle_hide()
turtle_up()
bholes <- list(c(1, 2), c(1), c(2))
turtle_do({
    turtle_setpos(1000, 1000)
    turtle_setangle(180)
    for (iii in c(1:3)) {
        mybhol <- bholes[[iii]]
        sierpinski_carpet_maze(angle = 120, unit_len = 11, 
            width = 81, height = 81, draw_boundary = TRUE, 
            boundary_lines = c(1, 2, 3), num_boundary_holes = 0, 
            boundary_holes = mybhol, balance = 1, color2 = "green", 
            start_from = "corner")
        turtle_left(120)
    }
})

plot of chunk menger-sponge

Sierpinski Trapezoids

One can make four different kinds of Sierpinski trapezoids, the traditional four triangles, a hexaflake, and something like a Dragon fractal:

library(TurtleGraphics)
library(mazealls)
turtle_init(1050, 600, mode = "clip")
turtle_hide()
turtle_up()
turtle_do({
    for (iii in c(1:4)) {
        turtle_setpos(40 + (iii - 1) * 250, 300)
        turtle_setangle(0)
        sierpinski_trapezoid_maze(unit_len = 8, depth = 5, 
            draw_boundary = TRUE, start_from = "midpoint", 
            num_boundary_holes = 2, boundary_holes = c(2, 
                4), color2 = "green", flip_color_parts = iii)  # this controls fractal style
    }
})

plot of chunk sierpinski-trapezoids

Sierpinski Hexagon

library(TurtleGraphics)
library(mazealls)
turtle_init(1250, 1100, mode = "clip")
turtle_up()
turtle_hide()
turtle_do({
    turtle_setpos(50, 550)
    turtle_setangle(30)
    sierpinski_hexagon_maze(depth = 6, unit_len = 9, 
        boundary_lines = TRUE, draw_boundary = TRUE, 
        boundary_holes = c(1, 3), start_from = "corner", 
        color1 = "black", color2 = "green", style = "sierpinski")
})

plot of chunk sierpinski-hexagon

Hexaflake

A hexaflake is a cross between a Koch snowflake and a Sierpinski triangle, at least in theory.

library(TurtleGraphics)
library(mazealls)
# hexaflake
long_side <- 2400
inner_side <- long_side * sqrt(3)/2
sidelen <- long_side/2
dep <- 4
ul <- floor(sidelen/(3^dep))
true_wid <- 2 * ul * 3^dep * sqrt(3)/2

turtle_init(ceiling(1.1 * inner_side), ceiling(1.1 * 
    long_side), mode = "clip")
turtle_up()
turtle_hide()
turtle_do({
    turtle_setpos(0.5 * (ceiling(1.1 * inner_side) - 
        true_wid), 0.55 * long_side)
    turtle_setangle(0)
    hexaflake_maze(depth = dep, unit_len = floor(sidelen/(3^dep)), 
        draw_boundary = TRUE, color2 = "gray80")
})

plot of chunk hexaflake

Controls

unit length

The unit_len parameter controls the graphical length of one 'unit', which is the length of holes between sections of the mazes, and is roughly the width of the 'hallways' of a maze. Here is an example of using different unit lengths in a stack of trapezoids

library(TurtleGraphics)
library(mazealls)
# stack some trapezoids with different unit_len
turtle_init(2500, 2500)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 800)
    turtle_right(90)
    clockwise <- TRUE
    for (iii in c(1:6)) {
        iso_trapezoid_maze(depth = 5, unit_len = 2^(6 - 
            iii), method = "four_trapezoids", draw_boundary = TRUE, 
            clockwise = clockwise, end_side = 3, start_from = "midpoint", 
            boundary_lines = c(1, 2, 4), boundary_holes = c(1))
        clockwise <- !clockwise
    }
})

plot of chunk unit-len-stack-trap

boundaries

The parameters draw_boundary, boundary_lines, boundary_holes, num_boundary_holes and boundary_hole_color control the drawing of the final outer boundary of polynomial mazes. Without a boundary the maze can be used in recursive construction. Adding a boundary provides the typical entry and exit points of a maze. The parameter draw_boundary is a single Boolean that controls whether the boundary is drawn or not. The parameter boundary_lines may be a scalar Boolean, or a numeric array giving the indices of which sides should have drawn boundary lines. The sides are numbered in the order in which they appear, and are controlled by the clockwise parameter. The parameter boundary_holes is a numeric array giving the indices of the boundary lines that should have holes. If NULL, then we uniformly choose num_boundary_holes holes at random. Holes can be drawn as colored segments with the boundary_hole_color, which is a character array giving the color of each hole. The value 'clear' stands in for clear holes.

library(TurtleGraphics)
library(mazealls)
# side by side
turtle_init(1000, 400)
turtle_up()
turtle_hide()
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 450)
    turtle_right(90)
    
    parallelogram_maze(unit_len = 10, height = 25, 
        draw_boundary = FALSE, end_side = 3)
    
    turtle_left(90)
    turtle_forward(distance = 30)
    turtle_left(90)
    
    parallelogram_maze(unit_len = 10, height = 25, 
        draw_boundary = TRUE, boundary_lines = c(1, 
            3), boundary_holes = FALSE, end_side = 3)
    
    turtle_left(90)
    turtle_forward(distance = 30)
    turtle_left(90)
    
    parallelogram_maze(unit_len = 10, height = 25, 
        draw_boundary = TRUE, boundary_lines = c(2, 
            4), boundary_holes = c(2, 4), boundary_hole_color = c("ignore", 
            "green", "ignore", "blue"))
})

plot of chunk boundary-stuff

end side

The end_side parameter controls which side of the maze the turtle ends on. The default value of 1 essentially causes the turtle to end where it started. The sides are numbered in the order in which the boundary would be drawn. Along with the boundary controls, the ending side can be useful to join together polygons into more complex mazes, as below:

library(TurtleGraphics)
library(mazealls)
# triangle of hexes
turtle_init(2500, 2500)
turtle_up()
turtle_hide()
ul <- 22
dep <- 4
turtle_do({
    turtle_left(90)
    turtle_forward(distance = 1150)
    turtle_right(90)
    turtle_backward(distance = 650)
    hexagon_maze(unit_len = ul, depth = dep, end_side = 4, 
        draw_boundary = TRUE, boundary_holes = c(1, 
            3, 4))
    parallelogram_maze(unit_len = ul, height = 2^dep, 
        clockwise = FALSE, width = 3 * (2^dep), end_side = 3, 
        draw_boundary = TRUE, num_boundary_holes = 0, 
        boundary_lines = c(2, 4))
    hexagon_maze(unit_len = ul, depth = dep, end_side = 2, 
        draw_boundary = TRUE, boundary_holes = c(1, 
            2))
    parallelogram_maze(unit_len = ul, height = 2^dep, 
        clockwise = FALSE, width = 3 * (2^dep), end_side = 3, 
        draw_boundary = TRUE, num_boundary_holes = 0, 
        boundary_lines = c(2, 4))
    hexagon_maze(unit_len = ul, depth = dep, end_side = 2, 
        draw_boundary = TRUE, boundary_holes = c(1, 
            5))
    parallelogram_maze(unit_len = ul, height = 2^dep, 
        clockwise = FALSE, width = 3 * (2^dep), end_side = 3, 
        draw_boundary = TRUE, num_boundary_holes = 0, 
        boundary_lines = c(2, 4))
})

plot of chunk tri-of-hex

library(TurtleGraphics)
library(mazealls)
# tiling!
tile_bit <- function(unit_len, depth, clockwise = TRUE, 
    draw_boundary = FALSE, boundary_holes = NULL) {
    turtle_col("black")
    parallelogram_maze(unit_len = unit_len, height = 2^depth, 
        clockwise = clockwise, draw_boundary = TRUE, 
        num_boundary_holes = 4)
    turtle_col("red")
    for (iii in c(1:4)) {
        turtle_forward(unit_len * 2^(depth - 1))
        turtle_right(90)
        turtle_forward(unit_len * 2^(depth - 1))
        eq_triangle_maze(unit_len = unit_len, depth = depth, 
            clockwise = !clockwise, draw_boundary = draw_boundary, 
            boundary_lines = ifelse(iii <= 2, 2, 3), 
            num_boundary_holes = 3, end_side = ifelse(iii == 
                4, 2, 1))
        if (iii == 2) {
            turtle_col("blue")
        }
    }
    turtle_col("black")
    if (draw_boundary) {
        blines <- c(1, 2, 4)
    } else {
        blines = 1
    }
    parallelogram_maze(unit_len = unit_len, height = 2^depth, 
        clockwise = clockwise, draw_boundary = TRUE, 
        boundary_lines = blines, boundary_holes = blines, 
        end_side = 3)
    turtle_forward(unit_len * 2^(depth - 1))
    turtle_left(60)
    turtle_forward(unit_len * 2^(depth - 1))
}

turtle_init(2500, 2500, mode = "clip")
turtle_up()
turtle_hide()

x0 <- 220
y0 <- 0
ul <- 20
dep <- 5
turtle_do({
    for (jjj in c(1:5)) {
        turtle_setpos(x = x0, y = y0)
        turtle_setangle(angle = 0)
        replicate(5, tile_bit(unit_len = ul, depth = dep, 
            draw_boundary = TRUE))
        x0 <- x0 + ul * (2^dep) * (1 + sqrt(3)/2)
        y0 <- y0 + ul * (2^(dep - 1))
    }
})

plot of chunk tileit

Fun

Or whatever you call it. Here are some mazes built using the primitives.

A dumb looking tree

Like it says on the label.

library(TurtleGraphics)
library(mazealls)
treeit <- function(unit_len, depth, height, left_shrink = 3/4, 
    right_shrink = 1/3) {
    height <- ceiling(height)
    parallelogram_maze(unit_len = unit_len, height = 2^depth, 
        width = height, clockwise = TRUE, draw_boundary = TRUE, 
        boundary_lines = c(1, 2, 4), start_from = "midpoint", 
        boundary_holes = c(1), end_side = 3)
    if (depth > 0) {
        iso_trapezoid_maze(depth = depth - 1, unit_len = unit_len, 
            clockwise = FALSE, draw_boundary = TRUE, 
            boundary_lines = c(1, 3), start_from = "midpoint", 
            boundary_holes = c(1), end_side = 4)
        treeit(unit_len = unit_len, depth = depth - 
            1, height = left_shrink * height, left_shrink = left_shrink, 
            right_shrink = right_shrink)
        turtle_right(180)
        turtle_forward(unit_len * 2^(depth - 2))
        turtle_right(60)
        turtle_forward(unit_len * 2^(depth - 1))
        turtle_right(60)
        turtle_forward(unit_len * 2^(depth - 2))
        turtle_right(180)
        treeit(unit_len = unit_len, depth = depth - 
            1, height = right_shrink * height, left_shrink = left_shrink, 
            right_shrink = right_shrink)
        turtle_forward(unit_len * 2^(depth - 2))
        turtle_left(60)
        turtle_forward(unit_len * 2^(depth - 2))
        turtle_left(90)
        turtle_forward(unit_len * sqrt(3) * 2^(depth - 
            2))
        turtle_left(90)
    }
    turtle_right(90)
    turtle_forward(unit_len * height)
    turtle_right(90)
}

turtle_init(2500, 2500, mode = "clip")
turtle_up()
turtle_hide()
turtle_do({
    turtle_setpos(1600, 20)
    turtle_setangle(270)
    treeit(unit_len = 13, depth = 5, height = 70, left_shrink = 2/3, 
        right_shrink = 1/3)
})

plot of chunk tree-thing

A hex spiral

turtle_init(2500, 2500, mode = "clip")
turtle_up()
turtle_hide()
della <- -3
lens <- seq(from = 120, to = 2 - della, by = della)

ulen <- 10
high <- 14
turtle_do({
    turtle_setpos(260, 570)
    turtle_setangle(270)
    for (iter in seq_along(lens)) {
        parallelogram_maze(unit_len = ulen, height = high, 
            width = lens[iter], start_from = "corner", 
            clockwise = TRUE, draw_boundary = TRUE, 
            boundary_holes = c(1, 3), end_side = 3)
        eq_triangle_maze(unit_len = ulen, depth = log2(high), 
            start_from = "corner", clockwise = FALSE, 
            draw_boundary = TRUE, boundary_lines = c(3), 
            num_boundary_holes = 0, boundary_holes = rep(FALSE, 
                3), end_side = 2)
    }
    parallelogram_maze(unit_len = ulen, height = high, 
        width = lens[iter] + della, start_from = "corner", 
        clockwise = TRUE, draw_boundary = TRUE, boundary_holes = c(1, 
            3), end_side = 3)
})

plot of chunk hex-spiral

A rectangular spiral

Well, a rhombus spiral.

rect_spiral <- function(unit_len, height, width, thickness = 8L, 
    angle = 90, clockwise = TRUE, start_hole = FALSE) {
    if (start_hole) {
        bholes <- 1
        fourl_dist <- height - thickness
    } else {
        bholes <- 4
        fourl_dist <- height
    }
    
    last_one <- (width < thickness)
    if (last_one) {
        blines <- 1:4
        bholes <- c(3, bholes)
    } else {
        blines <- c(1, 2, 4)
    }
    blocs <- -sample.int(n = thickness, size = 4, replace = TRUE)
    
    parallelogram_maze(unit_len = unit_len, height = thickness, 
        width = fourl_dist, angle = 180 - angle, start_from = "corner", 
        clockwise = clockwise, draw_boundary = TRUE, 
        boundary_lines = blines, boundary_holes = bholes, 
        boundary_hole_locations = blocs, end_side = 3)
    if (clockwise) {
        turtle_left(angle)
    } else {
        turtle_right(angle)
    }
    
    if (!last_one) {
        rect_spiral(unit_len, height = width, width = height - 
            thickness, thickness = thickness, angle = 180 - 
            angle, clockwise = clockwise, start_hole = FALSE)
    }
}

turtle_init(2500, 2500, mode = "clip")
turtle_up()
turtle_hide()
turtle_do({
    turtle_setpos(300, 50)
    turtle_setangle(270)
    rect_spiral(unit_len = 20, 110, 90, thickness = 15, 
        angle = 80, start_hole = TRUE)
})

plot of chunk rect-spiral

A double rectangular spiral

The path spirals in, then out, joining at the center. This might be buggy.

double_spiral <- function(unit_len, height, width, 
    thickness = 8L, angle = 90, clockwise = TRUE, start_hole = TRUE, 
    color1 = "black", color2 = "black") {
    len1 <- height - thickness
    bline1 <- c(1, 2, 4)
    bline2 <- c(1, 3, 4)
    bhole1 <- c(2)
    if (start_hole) {
        len2 <- len1
        bline2 <- c(bline2, 2)
        bhole1 <- c(bhole1, 4)
    } else {
        len2 <- len1 - 2 * thickness
    }
    blocs1 <- -sample.int(n = thickness, size = 4, 
        replace = TRUE)
    blocs2 <- -sample.int(n = thickness, size = 4, 
        replace = TRUE)
    last_one <- (min(len1, len2) <= 0) || (width <= 
        2 * thickness)
    if (last_one) {
        bhole2 <- c(4)
    } else {
        bhole2 <- c(3)
    }
    if (start_hole) {
        bhole2 <- c(bhole2, 2)
    }
    second_stripe <- ((len2 > 0) && (width > thickness))
    
    if (len1 > 0) {
        turtle_col(color1)
        parallelogram_maze(unit_len = unit_len, height = len1, 
            width = thickness, angle = angle, start_from = "corner", 
            clockwise = clockwise, draw_boundary = TRUE, 
            boundary_lines = bline1, boundary_holes = bhole1, 
            boundary_hole_locations = blocs1, end_side = ifelse(len2 > 
                0, 3, 2))
        if (second_stripe) {
            wid2 <- min(thickness, width - thickness)
            turtle_col(color2)
            parallelogram_maze(unit_len = unit_len, 
                height = len2, width = wid2, angle = 180 - 
                  angle, start_from = "corner", clockwise = !clockwise, 
                draw_boundary = TRUE, boundary_lines = bline2, 
                boundary_holes = bhole2, boundary_hole_locations = blocs2, 
                end_side = 4)
            turtle_col(color1)
            
            turtle_forward(unit_len * (thickness + 
                wid2))
            if (clockwise) {
                turtle_right(180 - angle)
            } else {
                turtle_left(180 - angle)
            }
            turtle_forward(unit_len * thickness)
            if (clockwise) {
                turtle_right(angle)
            } else {
                turtle_left(angle)
            }
        }
    }
    next_height <- width
    next_width <- ifelse(start_hole, height, height - 
        2 * thickness)
    
    if (last_one) {
        if (second_stripe) {
            parallelogram_maze(unit_len = unit_len, 
                height = next_height, width = thickness, 
                start_from = "corner", angle = 180 - 
                  angle, clockwise = clockwise)
        } else {
            parallelogram_maze(unit_len = unit_len, 
                height = next_height, width = thickness, 
                start_from = "corner", angle = angle, 
                clockwise = !clockwise)
        }
    } else {
        double_spiral(unit_len, height = next_height, 
            width = next_width, thickness = thickness, 
            angle = 180 - angle, clockwise = clockwise, 
            start_hole = FALSE, color1 = color1, color2 = color2)
    }
}

turtle_init(2500, 2500, mode = "clip")
turtle_up()
turtle_hide()
turtle_do({
    turtle_setpos(300, 50)
    turtle_setangle(0)
    double_spiral(unit_len = 20, height = 100, width = 100, 
        thickness = 10, angle = 80, start_hole = TRUE, 
        color2 = "gray40")
})

plot of chunk rect-double-spiral

A boustrophedon

As in ox that plods back and forth in a field.

boustro <- function(unit_len, height, width, thickness = 8L, 
    angle = 90, clockwise = TRUE, start_hole = TRUE, 
    balance = 0) {
    if (start_hole) {
        bholes <- c(1, 3)
        blines <- 1:4
    } else {
        bholes <- c(1, 3)
        blines <- 2:4
    }
    
    last_one <- (width < thickness)
    blocs <- sample.int(n = thickness, size = 4, replace = TRUE)
    
    parallelogram_maze(unit_len = unit_len, height = height, 
        width = thickness, angle = angle, balance = balance, 
        start_from = "corner", clockwise = clockwise, 
        draw_boundary = TRUE, boundary_lines = blines, 
        boundary_holes = bholes, boundary_hole_locations = blocs, 
        end_side = 3)
    if (!last_one) {
        boustro(unit_len, height = height, width = width - 
            thickness, thickness = thickness, angle = 180 - 
            angle, clockwise = !clockwise, start_hole = FALSE, 
            balance = balance)
    }
}

turtle_init(2500, 2500, mode = "clip")
turtle_up()
turtle_hide()
turtle_do({
    turtle_setpos(100, 50)
    turtle_setangle(0)
    boustro(unit_len = 26, height = 82, width = 80, 
        thickness = 8, angle = 85, balance = 1.5)
})

plot of chunk rect-boustrophedon

About

R package for generating mazes.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages