Skip to content

PyTorch implementations of Non-parametric Unsupervised Classification with Adversarial Autoencoders

Notifications You must be signed in to change notification settings

shaharazulay/adversarial-autoencoder-classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Non Parametric Classification with Advesarial AutoEncoders

PyTorch implementation of Non-parametric Unsupervised Classification with Adversarial Autoencoders.

Shahar Azulay

Python27 Python35 License PyTorch

Documentation

_static/logo.png

[1] A.Makhzani, J.Shlens, N.Jaitly, I.Goodfellow, B.Frey: Adversarial Autoencoders, 2016, arXiv:1511.05644v2

Usage Examples:

Install the module

>>> python setup.py install --user

Initialize the Datasets

>>> init_datasets --dir-path <path-to-data-dir>

Train a new AAE in an Semi-Supervised setting

>>> train_semi_supervised --dir-path <path-to-data-dir> --n-epochs 35 --z-size 2 --n-classes 10 --batch-size 100
loading data started...
dataset size in use: 3000 [labeled trainset]  47000 [un-labeled trainset]  10000 [validation]
using configuration:
 {'learning_rates': {'auto_encoder_lr': 0.0008, 'generator_lr': 0.002, 'discriminator_lr': 0.0002, 'info_lr': 1e-05,             'mode_lr': 0.0008, 'disentanglement_lr': 0}, 'model': {'hidden_size': 3000, 'encoder_dropout': 0.2}, 'training':               {'use_mutual_info': False, 'use_mode_decoder': False, 'use_disentanglement': True, 'use_adam_optimization': True,            'use_adversarial_categorial_weights': True, 'lambda_z_l2_regularization': 0.15}}
current epoch:: [ ===================  ] 99.79%
...
_static/unsupervised_advesarial_learning_curve.png

Train a new AAE in a Fully Unsupervised setting

>>> train_unsupervised --dir-path <path-to-data-dir> --n-epochs 35 --z-size 2 --n-classes 10 --batch-size 100
loading data started...
dataset size in use: 3000 [labeled trainset]  47000 [un-labeled trainset]  10000 [validation]
...

Visualize a trained model using pre-defined visualizations

>>> generate_model_visualization --dir-path <path-to-data-dir> --model-dir-path {<path-to-model-dir> --mode unsupervised --n-classes 10 --z-size 5
loading data started...
dataset size in use: 3000 [labeled trainset]  47000 [un-labeled trainset]  10000 [validation]
Label 1: 40.2%, Best matching label; 20
Label 2: 41.9%, Best matching label; 14
Label 3: 33.0%, Best matching label; 4
Label 4: 41.1%, Best matching label; 2
Label 5: 53.8%, Best matching label; 11
Label 6: 44.3%, Best matching label; 26
Label 7: 48.6%, Best matching label; 6
Label 8: 47.6%, Best matching label; 0
Label 9: 40.1%, Best matching label; 22
ACCURACY: 0.85%
...
_static/modes_and_samples_from_each_label.png
Control the model and training hyper-parameters using a YAML configuration file
>>> train_unsupervised --dir-path <path-to-data-dir> --config-path <path-to-configuration-file> --n-epochs 35 --z-size 2 --n-classes 10 --batch-size 100

About

PyTorch implementations of Non-parametric Unsupervised Classification with Adversarial Autoencoders

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages