-
Notifications
You must be signed in to change notification settings - Fork 1
/
grammar.py
343 lines (294 loc) · 14.9 KB
/
grammar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
'''
Author: Ji-Sung Kim, Evan Chow
Project: jazzml / (used in) deepjazz
Purpose: Extract, manipulate, process musical grammar
Directly taken then cleaned up from Evan Chow's jazzml,
https://github.com/evancchow/jazzml,with permission.
'''
from collections import OrderedDict, defaultdict
from itertools import groupby
from music21 import *
import copy, random, pdb
#from preprocess import *
''' Helper function to determine if a note is a scale tone. '''
def __is_scale_tone(chord, note):
# Method: generate all scales that have the chord notes th check if note is
# in names
# Derive major or minor scales (minor if 'other') based on the quality
# of the chord.
scaleType = scale.DorianScale() # i.e. minor pentatonic
if chord.quality == 'major':
scaleType = scale.MajorScale()
# Can change later to deriveAll() for flexibility. If so then use list
# comprehension of form [x for a in b for x in a].
scales = scaleType.derive(chord) # use deriveAll() later for flexibility
allPitches = list(set([pitch for pitch in scales.getPitches()]))
allNoteNames = [i.name for i in allPitches] # octaves don't matter
# Get note name. Return true if in the list of note names.
noteName = note.name
return (noteName in allNoteNames)
''' Helper function to determine if a note is an approach tone. '''
def __is_approach_tone(chord, note):
# Method: see if note is +/- 1 a chord tone.
for chordPitch in chord.pitches:
stepUp = chordPitch.transpose(1)
stepDown = chordPitch.transpose(-1)
if (note.name == stepDown.name or
note.name == stepDown.getEnharmonic().name or
note.name == stepUp.name or
note.name == stepUp.getEnharmonic().name):
return True
return False
''' Helper function to determine if a note is a chord tone. '''
def __is_chord_tone(lastChord, note):
return (note.name in (p.name for p in lastChord.pitches))
''' Helper function to generate a chord tone. '''
def __generate_chord_tone(lastChord):
lastChordNoteNames = [p.nameWithOctave for p in lastChord.pitches]
return note.Note(random.choice(lastChordNoteNames))
''' Helper function to generate a scale tone. '''
def __generate_scale_tone(lastChord):
# Derive major or minor scales (minor if 'other') based on the quality
# of the lastChord.
scaleType = scale.WeightedHexatonicBlues() # minor pentatonic
if lastChord.quality == 'major':
scaleType = scale.MajorScale()
# Can change later to deriveAll() for flexibility. If so then use list
# comprehension of form [x for a in b for x in a].
scales = scaleType.derive(lastChord) # use deriveAll() later for flexibility
allPitches = list(set([pitch for pitch in scales.getPitches()]))
allNoteNames = [i.name for i in allPitches] # octaves don't matter
# Return a note (no octave here) in a scale that matches the lastChord.
sNoteName = random.choice(allNoteNames)
lastChordSort = lastChord.sortAscending()
sNoteOctave = random.choice([i.octave for i in lastChordSort.pitches])
sNote = note.Note(("%s%s" % (sNoteName, sNoteOctave)))
return sNote
''' Helper function to generate an approach tone. '''
def __generate_approach_tone(lastChord):
sNote = __generate_scale_tone(lastChord)
aNote = sNote.transpose(random.choice([1, -1]))
return aNote
''' Helper function to generate a random tone. '''
def __generate_arbitrary_tone(lastChord):
return __generate_scale_tone(lastChord) # fix later, make random note.
''' Given the notes in a measure ('measure') and the chords in that measure
('chords'), generate a list of abstract grammatical symbols to represent
that measure as described in GTK's "Learning Jazz Grammars" (2009).
Inputs:
1) "measure" : a stream.Voice object where each element is a
note.Note or note.Rest object.
>>> m1
<music21.stream.Voice 328482572>
>>> m1[0]
<music21.note.Rest rest>
>>> m1[1]
<music21.note.Note C>
Can have instruments and other elements, removes them here.
2) "chords" : a stream.Voice object where each element is a chord.Chord.
>>> c1
<music21.stream.Voice 328497548>
>>> c1[0]
<music21.chord.Chord E-4 G4 C4 B-3 G#2>
>>> c1[1]
<music21.chord.Chord B-3 F4 D4 A3>
Can have instruments and other elements, removes them here.
Outputs:
1) "fullGrammar" : a string that holds the abstract grammar for measure.
Format:
(Remember, these are DURATIONS not offsets!)
"R,0.125" : a rest element of (1/32) length, or 1/8 quarter note.
"C,0.125<M-2,m-6>" : chord note of (1/32) length, generated
anywhere from minor 6th down to major 2nd down.
(interval <a,b> is not ordered). '''
def parse_melody(fullMeasureNotes, fullMeasureChords):
# Remove extraneous elements.x
measure = copy.deepcopy(fullMeasureNotes)
chords = copy.deepcopy(fullMeasureChords)
measure.removeByNotOfClass([note.Note, note.Rest])
chords.removeByNotOfClass([chord.Chord])
# Information for the start of the measure.
# 1) measureStartTime: the offset for measure's start, e.g. 476.0.
# 2) measureStartOffset: how long from the measure start to the first element.
measureStartTime = measure[0].offset - (measure[0].offset % 4)
measureStartOffset = measure[0].offset - measureStartTime
# Iterate over the notes and rests in measure, finding the grammar for each
# note in the measure and adding an abstract grammatical string for it.
fullGrammar = ""
prevNote = None # Store previous note. Need for interval.
numNonRests = 0 # Number of non-rest elements. Need for updating prevNote.
for ix, nr in enumerate(measure):
# Get the last chord. If no last chord, then (assuming chords is of length
# >0) shift first chord in chords to the beginning of the measure.
try:
lastChord = [n for n in chords if n.offset <= nr.offset][-1]
except IndexError:
chords[0].offset = measureStartTime
lastChord = [n for n in chords if n.offset <= nr.offset][-1]
# FIRST, get type of note, e.g. R for Rest, C for Chord, etc.
# Dealing with solo notes here. If unexpected chord: still call 'C'.
elementType = ' '
# R: First, check if it's a rest. Clearly a rest --> only one possibility.
if isinstance(nr, note.Rest):
elementType = 'R'
# C: Next, check to see if note pitch is in the last chord.
elif nr.name in lastChord.pitchNames or isinstance(nr, chord.Chord):
elementType = 'C'
# L: (Complement tone) Skip this for now.
# S: Check if it's a scale tone.
elif __is_scale_tone(lastChord, nr):
elementType = 'S'
# A: Check if it's an approach tone, i.e. +-1 halfstep chord tone.
elif __is_approach_tone(lastChord, nr):
elementType = 'A'
# X: Otherwise, it's an arbitrary tone. Generate random note.
else:
elementType = 'X'
# SECOND, get the length for each element. e.g. 8th note = R8, but
# to simplify things you'll use the direct num, e.g. R,0.125
if (ix == (len(measure)-1)):
# formula for a in "a - b": start of measure (e.g. 476) + 4
diff = measureStartTime + 4.0 - nr.offset
else:
diff = measure[ix + 1].offset - nr.offset
# Combine into the note info.
noteInfo = "%s,%.3f" % (elementType, nr.quarterLength) # back to diff
# THIRD, get the deltas (max range up, max range down) based on where
# the previous note was, +- minor 3. Skip rests (don't affect deltas).
intervalInfo = ""
if isinstance(nr, note.Note):
numNonRests += 1
if numNonRests == 1:
prevNote = nr
else:
noteDist = interval.Interval(noteStart=prevNote, noteEnd=nr)
noteDistUpper = interval.add([noteDist, "m3"])
noteDistLower = interval.subtract([noteDist, "m3"])
intervalInfo = ",<%s,%s>" % (noteDistUpper.directedName,
noteDistLower.directedName)
# print "Upper, lower: %s, %s" % (noteDistUpper,
# noteDistLower)
# print "Upper, lower dnames: %s, %s" % (
# noteDistUpper.directedName,
# noteDistLower.directedName)
# print "The interval: %s" % (intervalInfo)
prevNote = nr
# Return. Do lazy evaluation for real-time performance.
grammarTerm = noteInfo + intervalInfo
fullGrammar += (grammarTerm + " ")
return fullGrammar.rstrip()
''' Given a grammar string and chords for a measure, returns measure notes. '''
def unparse_grammar(m1_grammar, m1_chords):
m1_elements = stream.Voice()
currOffset = 0.0 # for recalculate last chord.
prevElement = None
for ix, grammarElement in enumerate(m1_grammar.split(' ')):
terms = grammarElement.split(',')
currOffset += float(terms[1]) # works just fine
# Case 1: it's a rest. Just append
if terms[0] == 'R':
rNote = note.Rest(quarterLength = float(terms[1]))
m1_elements.insert(currOffset, rNote)
continue
# Get the last chord first so you can find chord note, scale note, etc.
try:
lastChord = [n for n in m1_chords if n.offset <= currOffset][-1]
except IndexError:
m1_chords[0].offset = 0.0
lastChord = [n for n in m1_chords if n.offset <= currOffset][-1]
# Case: no < > (should just be the first note) so generate from range
# of lowest chord note to highest chord note (if not a chord note, else
# just generate one of the actual chord notes).
# Case #1: if no < > to indicate next note range. Usually this lack of < >
# is for the first note (no precedent), or for rests.
if (len(terms) == 2): # Case 1: if no < >.
insertNote = note.Note() # default is C
# Case C: chord note.
if terms[0] == 'C':
insertNote = __generate_chord_tone(lastChord)
# Case S: scale note.
elif terms[0] == 'S':
insertNote = __generate_scale_tone(lastChord)
# Case A: approach note.
# Handle both A and X notes here for now.
else:
insertNote = __generate_approach_tone(lastChord)
# Update the stream of generated notes
insertNote.quarterLength = float(terms[1])
if insertNote.octave < 4:
insertNote.octave = 4
m1_elements.insert(currOffset, insertNote)
prevElement = insertNote
# Case #2: if < > for the increment. Usually for notes after the first one.
else:
# Get lower, upper intervals and notes.
interval1 = interval.Interval(terms[2].replace("<",''))
interval2 = interval.Interval(terms[3].replace(">",''))
if interval1.cents > interval2.cents:
upperInterval, lowerInterval = interval1, interval2
else:
upperInterval, lowerInterval = interval2, interval1
lowPitch = interval.transposePitch(prevElement.pitch, lowerInterval)
highPitch = interval.transposePitch(prevElement.pitch, upperInterval)
numNotes = int(highPitch.ps - lowPitch.ps + 1) # for range(s, e)
# Case C: chord note, must be within increment (terms[2]).
# First, transpose note with lowerInterval to get note that is
# the lower bound. Then iterate over, and find valid notes. Then
# choose randomly from those.
if terms[0] == 'C':
relevantChordTones = []
for i in range(0, numNotes):
currNote = note.Note(lowPitch.transpose(i).simplifyEnharmonic())
if __is_chord_tone(lastChord, currNote):
relevantChordTones.append(currNote)
if len(relevantChordTones) > 1:
insertNote = random.choice([i for i in relevantChordTones
if i.nameWithOctave != prevElement.nameWithOctave])
elif len(relevantChordTones) == 1:
insertNote = relevantChordTones[0]
else: # if no choices, set to prev element +-1 whole step
insertNote = prevElement.transpose(random.choice([-2,2]))
if insertNote.octave < 3:
insertNote.octave = 3
insertNote.quarterLength = float(terms[1])
m1_elements.insert(currOffset, insertNote)
# Case S: scale note, must be within increment.
elif terms[0] == 'S':
relevantScaleTones = []
for i in range(0, numNotes):
currNote = note.Note(lowPitch.transpose(i).simplifyEnharmonic())
if __is_scale_tone(lastChord, currNote):
relevantScaleTones.append(currNote)
if len(relevantScaleTones) > 1:
insertNote = random.choice([i for i in relevantScaleTones
if i.nameWithOctave != prevElement.nameWithOctave])
elif len(relevantScaleTones) == 1:
insertNote = relevantScaleTones[0]
else: # if no choices, set to prev element +-1 whole step
insertNote = prevElement.transpose(random.choice([-2,2]))
if insertNote.octave < 3:
insertNote.octave = 3
insertNote.quarterLength = float(terms[1])
m1_elements.insert(currOffset, insertNote)
# Case A: approach tone, must be within increment.
# For now: handle both A and X cases.
else:
relevantApproachTones = []
for i in range(0, numNotes):
currNote = note.Note(lowPitch.transpose(i).simplifyEnharmonic())
if __is_approach_tone(lastChord, currNote):
relevantApproachTones.append(currNote)
if len(relevantApproachTones) > 1:
insertNote = random.choice([i for i in relevantApproachTones
if i.nameWithOctave != prevElement.nameWithOctave])
elif len(relevantApproachTones) == 1:
insertNote = relevantApproachTones[0]
else: # if no choices, set to prev element +-1 whole step
insertNote = prevElement.transpose(random.choice([-2,2]))
if insertNote.octave < 3:
insertNote.octave = 3
insertNote.quarterLength = float(terms[1])
m1_elements.insert(currOffset, insertNote)
# update the previous element.
prevElement = insertNote
return m1_elements