-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm.py
112 lines (72 loc) · 2.62 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
max_feature_value = 0
min_feature_value = 0
def generate_dataset():
X0, y = make_blobs(n_samples=100, n_features = 2, centers=2, cluster_std=1.05, random_state=10)
# add one to the x-values to incorporate bias
X1 = np.c_[np.ones((X0.shape[0])), X0]
y = [-1 if label==0 else label for label in y]
train_dict = {}
test_dict = {}
train_dict['data'], train_dict['labels'] = X1[:int(0.8 * len(X0))], y[:int(0.8 * len(X0))]
test_dict['data'], test_dict['labels'] = X1[int(0.8 * len(X0)):], y[int(0.8 * len(X0)):]
return train_dict, test_dict
def train(data_dict):
global max_feature_value
global min_feature_value
theta = np.zeros(len(data_dict['data'][0]))
max_feature_value = np.amax(data_dict['data'])
min_feature_value = np.amin(data_dict['data'])
weights_arr = []
max_epochs = 100
step_size = max_feature_value / 10
np.random.seed(274)
for epoch in range(1, max_epochs):
weights = step_size * theta
weights_arr.append(weights)
index = np.random.randint(0, len(data_dict['data']))
instance = data_dict['data'][index]
label = data_dict['labels'][index]
if( label * np.dot(weights, instance) < 1 ):
theta = theta + (label * instance)
step_size /= 10
weights = np.mean(weights_arr, axis=0)
weights[0] = 1
return weights
def test(weights, test_dict):
correct = 0
for i, instance in enumerate(test_dict['data']):
predicted_label = np.sign(np.dot(instance, weights))
if( test_dict['labels'][i] == predicted_label ):
correct += 1
print ('Accuracy: ', correct/len(test_dict['data']) * 100)
def separatingLine(x, w, v):
return (v - w[1] * x - w[0]) / w[2]
def draw(weights, data_dict):
global max_feature_value
global min_feature_value
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
colors = ['b' if label==-1 else 'r' for label in data_dict['labels']]
ax.scatter(data_dict['data'][:,1:2], data_dict['data'][:,2:], s = 20, facecolors='none', edgecolors=colors, linewidth=2)
x_min = 0
x_max = max_feature_value
y1 = separatingLine(x_min, weights, -1.1)
y2 = separatingLine(x_max, weights, -1.1)
ax.plot([x_min, x_max], [y1, y2], 'y--', c='b')
y1 = separatingLine(x_min, weights, -0.05)
y2 = separatingLine(x_max, weights, -0.05)
ax.plot([x_min, x_max], [y1, y2], 'k')
y1 = separatingLine(x_min, weights, 1)
y2 = separatingLine(x_max, weights, 1)
ax.plot([x_min, x_max], [y1, y2], 'y--', c='r')
plt.show()
def main():
train_dict, test_dict = generate_dataset()
weights = train(train_dict)
test(weights, test_dict)
draw(weights, train_dict)
if __name__ == "__main__":
main()