Skip to content

shawntanzk/cell-ontology

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status DOI Powered by the ODK Powered by the ROBOT

Cell Ontology

An ontology of cell types

This is the repository that contains the source for the cell ontology. Most users do not need to use this repo directly.

To browse the ontology, we recommend using OLS: https://www.ebi.ac.uk/ols/ontologies/cl

For more details on CL see:

Editors documentation:

Training materials from the 2020 CL Training Workshop are available at https://github.com/obophenotype/cell-ontology-training.

Twice monthly calls

Third Wednesday of month, 8am PT/11 am ET (CL)
Fourth Monday of month, 10am PT/1pm ET (CL & Uberon)
Agenda here.

Cite

Diehl,A.D., Meehan,T.F., Bradford,Y.M., Brush,M.H., Dahdul,W.M., Dougall,D.S., He,Y., Osumi-Sutherland,D., Ruttenberg,A., Sarntivijai,S., et al. (2016) The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability. J. Biomed. Semantics, 7, 44.

GitHub Actions Triggers

To trigger an automated human readable diff, add the following tag to a comment in your pull request: #gogoeditdiff

Applications

CL is used in a number of applications including:

HuBMAP

HuBMAP develops tools to create an open, global atlas of the human body at the cellular level. The Cell Ontology is used in annotating cell types in the tools developed.

HuBMAP Consortium (2019) The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature, 574, 187–192

Human Cell Atlas (HCA)

The Human Cell Atlas (HCA) is an international group of researchers using a combination of these new technologies to create cellular reference maps. The HCA use CL to annotated cells in their reference maps.

Regev,A., Teichmann,S.A., Lander,E.S., Amit,I., Benoist,C., Birney,E., Bodenmiller,B., Campbell,P., Carninci,P., Clatworthy,M., et al. (2017) The Human Cell Atlas. Elife, 6.

Single Cell Expression Atlas

The EBI single cell expression atlas is an extension to EBI expression atlas that displays gene expression in single cells. Cell types in the single cell expression atlas linked with terms from the Cell Ontology.

Papatheodorou,I., Moreno,P., Manning,J., Fuentes,A.M.-P., George,N., Fexova,S., Fonseca,N.A., Füllgrabe,A., Green,M., Huang,N., et al. (2020) Expression Atlas update: from tissues to single cells. Nucleic Acids Res., 48, D77–D83.

BRAIN Initiative Cell Census Network (BICCN)/Brain Data Standards Ontology

The BICCN created a high-resolution atlas of cell types in the primary motor based on single cell transcriptomics. These cell types are represented in the brain data standards ontology which anchors to cell types in the cell ontology.

Tan,S.Z.K., Kir,H., Aevermann,B., Gillespie,T., Hawrylycz,M., Lein,E., Matentzoglu,N., Miller,J., Mollenkopf,T.S., Mungall,C.J., et al. (2021) Brain Data Standards Ontology: A data-driven ontology of transcriptomically defined cell types in the primary motor cortex. bioRxiv, 10.1101/2021.10.10.463703.

ENCODE

The National Human Genome Research Institute (NHGRI) launched a public research consortium named ENCODE, the Encyclopedia Of DNA Elements, in September 2003, to carry out a project to identify all functional elements in the human genome sequence. The ENCODE DCC uses Uberon to annotate samples

Malladi, V. S., Erickson, D. T., Podduturi, N. R., Rowe, L. D., Chan, E. T., Davidson, J. M., … Hong, E. L. (2015). Ontology application and use at the ENCODE DCC. Database : The Journal of Biological Databases and Curation, 2015, bav010–. doi:10.1093/database/bav010

FANTOMS

FANTOM5 is using Uberon and CL to annotate samples allowing for transcriptome analyses with cell-type and tissue-level specificity.

Lizio, M., Harshbarger, J., Shimoji, H., Severin, J., Kasukawa, T., Sahin, S., … Kawaji, H. (2015). Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biology, 16(1), 22. doi:10.1186/s13059-014-0560-6

LINCS

Metadata Standard and Data Exchange Specifications to Describe, Model, and Integrate Complex and Diverse High-Throughput Screening Data from the Library of Integrated Network-based Cellular Signatures (LINCS) http://jbx.sagepub.com/content/early/2014/02/11/1087057114522514.full

Packages

No packages published

Languages

  • Makefile 61.1%
  • Common Lisp 16.9%
  • Perl 8.1%
  • Shell 4.8%
  • Scala 3.6%
  • Ruby 3.3%
  • Other 2.2%