This repository has been archived by the owner on Sep 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 97
/
sst_tracker.py
525 lines (434 loc) · 17.7 KB
/
sst_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
from layer.sst import build_sst
from config.config import config
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from scipy.optimize import linear_sum_assignment
import matplotlib.pyplot as plt
class TrackerConfig:
max_record_frame = 25
max_track_age = 25
max_track_node = 25
max_draw_track_node = 25
sst_model_path = config['resume']
cuda = config['cuda']
mean_pixel = config['mean_pixel']
image_size = (config['sst_dim'], config['sst_dim'])
min_iou_frame_gap = [1, 2, 3]
min_iou = [pow(0.2, i) for i in min_iou_frame_gap]
min_merge_threshold = 0.1
max_bad_node = 0.9
decay = 0.9995
class FeatureRecorder:
'''
Record features and boxes every frame
'''
def __init__(self):
self.max_record_frame = TrackerConfig.max_record_frame
self.all_frame_index = np.array([], dtype=int)
self.all_features = {}
self.all_boxes = {}
self.all_similarity = {}
self.all_iou = {}
def update(self, sst, frame_index, features, boxes):
# if the coming frame in the new frame
if frame_index not in self.all_frame_index:
# if the recorder have reached the max_record_frame.
if len(self.all_frame_index) == self.max_record_frame:
del_frame = self.all_frame_index[0]
del self.all_features[del_frame]
del self.all_boxes[del_frame]
del self.all_similarity[del_frame]
del self.all_iou[del_frame]
self.all_frame_index = self.all_frame_index[1:]
# add new item for all_frame_index, all_features and all_boxes. Besides, also add new similarity
self.all_frame_index = np.append(self.all_frame_index, frame_index)
self.all_features[frame_index] = features
self.all_boxes[frame_index] = boxes
self.all_similarity[frame_index] = {}
for pre_index in self.all_frame_index[:-1]:
delta = pow(TrackerConfig.decay, frame_index - pre_index)
pre_similarity = sst.forward_stacker_features(Variable(self.all_features[pre_index]), Variable(features), fill_up_column=False)
self.all_similarity[frame_index][pre_index] = pre_similarity*delta
self.all_iou[frame_index] = {}
for pre_index in self.all_frame_index[:-1]:
iou = TrackUtil.get_iou(self.all_boxes[pre_index], boxes)
self.all_iou[frame_index][pre_index] = iou
else:
self.all_features[frame_index] = features
self.all_boxes[frame_index] = boxes
index = self.all_frame_index.__index__(frame_index)
for pre_index in self.all_frame_index[:index+1]:
if pre_index == self.all_frame_index[-1]:
continue
pre_similarity = sst.forward_stacker_features(Variable(self.all_features[pre_index]), Variable(self.all_features[-1]))
self.all_similarity[frame_index][pre_index] = pre_similarity
iou = TrackUtil.get_iou(self.all_boxes[pre_index], boxes)
self.all_similarity[frame_index][pre_index] = iou
def get_feature(self, frame_index, detection_index):
'''
get the feature by the specified frame index and detection index
:param frame_index: start from 0
:param detection_index: start from 0
:return: the corresponding feature at frame index and detection index
'''
if frame_index in self.all_frame_index:
features = self.all_features[frame_index]
if len(features) == 0:
return None
if detection_index < len(features):
return features[detection_index]
return None
def get_box(self, frame_index, detection_index):
if frame_index in self.all_frame_index:
boxes = self.all_boxes[frame_index]
if len(boxes) == 0:
return None
if detection_index < len(boxes):
return boxes[detection_index]
return None
def get_features(self, frame_index):
if frame_index in self.all_frame_index:
features = self.all_features[frame_index]
else:
return None
if len(features) == 0:
return None
return features
def get_boxes(self, frame_index):
if frame_index in self.all_frame_index:
boxes = self.all_boxes[frame_index]
else:
return None
if len(boxes) == 0:
return None
return boxes
class Node:
def __init__(self, frame_index, feature_index, detection_index):
self.frame_index = frame_index
self.feature_index = feature_index
self.detection_index = detection_index
self.active = True
class Track:
_id_pool = 0
def __init__(self):
self.s = np.zeros((TrackerConfig.max_track_node, TrackerConfig.max_track_node), dtype=np.float) # similarity score
for i in range(len(self.s)):
self.s[i, i] = -1
self.f = np.array([], dtype=int) # recorded frame
self.uv = np.zeros((TrackerConfig.max_track_node, TrackerConfig.max_track_node), dtype=int) # the box index
self.id = Track._id_pool
Track._id_pool += 1
self.age = 0
self.color = tuple((np.random.rand(3) * 255).astype(int).tolist())
self.valid = True
def update(self, frame_index, similarity, index):
if len(self.f) == TrackerConfig.max_track_node:
# remove the first item
self.f = self.f[1:]
s = np.zeros((TrackerConfig.max_track_node, TrackerConfig.max_track_node), dtype=np.float)
for i in range(len(self.s)):
self.s[i, i] = -1
s[:-1, :-1] = self.s[1:, 1:]
self.s = s
uv = np.zeros((TrackerConfig.max_track_node, TrackerConfig.max_track_node), dtype=int)
uv[:-1, :-1] = self.uv[1:, 1:]
self.uv = uv
self.f = np.append(self.f, frame_index)
i = len(self.f) - 1
self.s[:len(similarity), i] = similarity
self.uv[:len(index), i] = index
def add_age(self):
self.age += 1
def reset_age(self):
self.age = 0
def get_all_nodes(self, recorder):
all_nodes = []
for i, f in enumerate(self.f):
id = self.uv[i, i]
if id == -1:
continue
all_nodes.append(recorder.all_boxes[f][id, :])
return all_nodes
def get_current_box(self, recorder):
if len(self.f) > 0 and self.age == 0:
frame_index = self.f[-1]
i = len(self.f) - 1
id = self.uv[i, i]
if id != -1:
return recorder.all_boxes[frame_index][id, :]
return None
def get_total_similarity(self):
total_similarity = []
total_count = 0
for i, f in enumerate(self.f):
if self.s[i, i] > 0:
total_similarity += [self.s[i, i]]
total_count += 1
if total_count == 0:
return 0
else:
return np.min(total_similarity)
def remove_similarity_node(self, t):
# Remove all the node with same id compared with t.
remove_frame = []
for i, f in enumerate(t.f):
if f in self.f and t.uv[i, i] != -1:
id1 = t.uv[i, i]
index = np.where(self.f==f)[0][0]
id = self.uv[index, index]
if id == id1:
remove_frame += [index]
self.uv[index, index] = -1
# Remove extra one node which is the cause of wrong matching.
if len(remove_frame) > 0:
min_index = min(remove_frame)
min_index -= 1
while min_index > 0:
if self.uv[min_index, min_index] != -1:
self.uv[min_index, min_index] = -1
min_index -= 1
# if remove all the nodes, then remove this track
is_valid = False
for i, f in enumerate(self.f):
if self.uv[i, i] != -1:
is_valid = True
break
self.valid = is_valid
def get_bad_probability(self):
if len(self.f) == 0:
return 0.0
bad_num = 0
for i, f in enumerate(self.f):
if self.uv[i, i] == -1:
bad_num += 1.0
return bad_num / len(self.f)
class TrackUtil:
@staticmethod
def convert_detection(detection):
'''
transform the current detection center to [-1, 1]
:param detection: detection
:return: translated detection
'''
# get the center, and format it in (-1, 1)
center = (2 * detection[:, 0:2] + detection[:, 2:4]) - 1.0
center = torch.from_numpy(center.astype(float)).float()
center.unsqueeze_(0)
center.unsqueeze_(2)
center.unsqueeze_(3)
if TrackerConfig.cuda:
return Variable(center.cuda())
return Variable(center)
@staticmethod
def convert_image(image):
'''
transform image to the FloatTensor (1, 3,size, size)
:param image: same as update parameter
:return: the transformed image FloatTensor (i.e. 1x3x900x900)
'''
image = cv2.resize(image, TrackerConfig.image_size).astype(np.float32)
image -= TrackerConfig.mean_pixel
image = torch.FloatTensor(image)
image = image.permute(2, 0, 1)
image.unsqueeze_(dim=0)
if TrackerConfig.cuda:
return Variable(image.cuda())
return Variable(image)
@staticmethod
def get_iou(pre_boxes, next_boxes):
h = len(pre_boxes)
w = len(next_boxes)
if h == 0 or w == 0:
return []
iou = np.zeros((h, w), dtype=float)
for i in range(h):
b1 = np.copy(pre_boxes[i, :])
b1[2:] = b1[:2] + b1[2:]
for j in range(w):
b2 = np.copy(next_boxes[j, :])
b2[2:] = b2[:2] + b2[2:]
overlap = max(min(b1[2], b2[2]) - max(b1[0], b2[0]), 0) * max(min(b1[3], b2[3])-max(b1[1], b2[1]), 0)
area = (b1[2]-b1[0])*(b1[3]-b1[1]) + (b2[2]-b2[0])*(b2[3]-b2[1]) - overlap
iou[i,j] = overlap / area
return iou
@staticmethod
def get_merge_value(t1, t2):
merge_value = 0
if t1 is t2:
return merge_value
for i, f1 in enumerate(t1.f):
for j, f2 in enumerate(t2.f):
if f1 == f2 and t1.uv[i, i] == t2.uv[j, j] and t1.uv[i, i] != -1:
merge_value += 1
return merge_value / float(TrackerConfig.max_track_node)
@staticmethod
def merge(t1, t2):
# keep the track with the highest matching probability.
# remove the overlapped node of the bad one
s1 = t1.get_total_similarity()
s2 = t2.get_total_similarity()
is_t1 = False
if s1 == 0 and s2 == 0:
if t1.id > t2.id:
is_t1 = True
else:
if s1 < s2:
is_t1 = True
if is_t1:
t1.remove_similarity_node(t2)
else:
t2.remove_similarity_node(t1)
class TrackSet:
def __init__(self):
self.tracks = list()
self.max_drawing_track = TrackerConfig.max_draw_track_node
self.cuda = TrackerConfig.cuda
self.recorder = FeatureRecorder()
self.frame_index = 0
# load the model
self.sst = build_sst('test', 900)
if self.cuda:
cudnn.benchmark = True
self.sst.load_state_dict(
torch.load(TrackerConfig.sst_model_path)
)
self.sst = self.sst.cuda()
else:
self.sst.load_state_dict(torch.load(config['resume'], map_location='cpu'))
self.sst.eval()
def __getitem__(self, item):
return self.tracks[item]
def __len__(self):
return len(self.tracks)
def get_similarity_uv_by_linear_assignment(self, t, frame_index):
res_similarity = []
res_uv = []
# for i, f in enumerate(t.f):
# if len(t.f) ==
def get_similarity_uv(self, t, frame_index):
res_similarity = []
res_uv = []
for i, f in enumerate(t.f):
if len(t.f) == TrackerConfig.max_track_node and i == 0:
continue
all_iou = self.recorder.all_iou[frame_index][f]
all_similarity = self.recorder.all_similarity[frame_index][f]
selected_box_index = t.uv[i, i]
if selected_box_index == -1: # cannot find box in f frame.
res_similarity += [0]
res_uv += [-1]
continue
# combine the similarity with the iou
selected_similarity = np.copy(all_similarity[selected_box_index, :])
delta_f = frame_index - f
if delta_f in TrackerConfig.min_iou_frame_gap:
iou_index = TrackerConfig.min_iou_frame_gap.index(delta_f)
selected_iou = (all_iou[selected_box_index, :] >= TrackerConfig.min_iou[iou_index]).astype(float)
selected_iou = np.append(selected_iou, 1.0)
selected_similarity = selected_similarity * selected_iou
max_index = np.argmax(selected_similarity)
max_value = all_similarity[selected_box_index, max_index]
if max_index == all_similarity.shape[1] - 1: # new node
max_index = -1
res_uv += [int(max_index)]
res_similarity += [float(max_value)]
# get the representation box of this frame.
res = {}
for uv, s in zip(res_uv, res_similarity):
# if s < 0.5:
# continue
if uv not in res:
res[uv] = [s]
else:
res[uv] += [s]
if len(res.keys()) > 0:
max_uv = max(res.keys(), key=(lambda k: np.sum(res[k])))
else:
max_uv = -1
res_similarity += [1]
res_uv += [max_uv]
if max_uv == -1:
t.age += 1
else:
t.age = 0
return res_similarity, res_uv
def show(self, image):
h, w, _ = image.shape
# draw rectangle
for t in self.tracks:
b = t.get_current_box(self.recorder)
if not b is None:
image = cv2.putText(image, str(t.id), (int(b[0] * w), int((b[1]) * h)), cv2.FONT_HERSHEY_SIMPLEX, 1,
t.color, 3)
image = cv2.rectangle(image, (int(b[0] * w), int((b[1]) * h)),
(int((b[0] + b[2]) * w), int((b[1] + b[3]) * h)), t.color, 2)
# draw line
for t in self.tracks:
if t.age > 1:
continue
nodes = t.get_all_nodes(self.recorder)
if len(nodes) > self.max_drawing_track:
start = len(nodes) - self.max_drawing_track
else:
start = 0
for n1, n2 in zip(nodes[start:], nodes[start + 1:]):
c1 = (int((n1[0] + n1[2] / 2.0) * w), int((n1[1] + n1[3]) * h))
c2 = (int((n2[0] + n2[2] / 2.0) * w), int((n2[1] + n2[3]) * h))
image = cv2.line(image, c1, c2, t.color, 2)
return image
def update(self, image, detection, show_image):
'''
1. get all the detection features and update the feature recorder
2. according the features update trackset
:param image: the current frame
:param detection: the detected boxes
:return: update current track according to the extracted features
'''
frame_index = self.frame_index
input_image = TrackUtil.convert_image(image)
input_detection = TrackUtil.convert_detection(detection)
features = self.sst.forward_feature_extracter(input_image, input_detection)
self.recorder.update(self.sst, frame_index, features.data, detection)
if frame_index == 0:
for i in range(len(detection)):
t = Track()
t.update(0, [1], [i])
self.tracks.append(t)
else:
# get all similarity between each frame
record_id = []
for t in self.tracks:
# get every boxes in current frame's similarity.
similarity, uv = self.get_similarity_uv(t, frame_index)
record_id += uv[-1:] # record the representation
t.update(frame_index, similarity, uv)
# add new tracks
for i in range(len(detection)):
if i not in record_id:
t = Track()
t.update(frame_index, [1], [i])
self.tracks.append(t)
# merge tracks
l_track = len(self.tracks)
if l_track != 0:
merge_matrix = np.zeros((l_track, l_track), dtype=float)
for i, t1 in enumerate(self.tracks):
for j, t2 in enumerate(self.tracks):
merge_matrix[i, j] = TrackUtil.get_merge_value(t1, t2)
merge_matrix = merge_matrix > TrackerConfig.min_merge_threshold
if sum(sum(merge_matrix)) > 0:
for i in range(l_track):
if self.tracks[i].valid:
for j in range(l_track):
if self.tracks[j].valid and merge_matrix[i, j]:
TrackUtil.merge(self.tracks[i], self.tracks[j])
self.tracks = [t for t in self.tracks if t.valid]
# remove older track
self.tracks = [t for t in self.tracks if t.age < TrackerConfig.max_track_age and t.get_bad_probability() < TrackerConfig.max_bad_node]
self.frame_index += 1
if show_image:
image = self.show(image)
return image