-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvowpal.py
198 lines (174 loc) · 7.08 KB
/
vowpal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import string
import subprocess
import collections
class VowpalExample:
'''A single example that Vowpal predicts or learns.'''
__slots__ = ('value', 'id', 'sections', 'SECTION_NAME_KEY')
def __init__(self, id, value=None):
self.SECTION_NAME_KEY = '__section_name__'
self.value = value
self.id = id
self.sections = [] # list of dictionaries
def add_section(self, name, section):
'''
Adds a new section of features for the example.
Name is the namespace of the section.
Section is a dictionary:
Keys are feature names.
Values are feature values or None for unary features.
Namespaces are useful for creating interactions (see vowpal wiki).
'''
section[self.SECTION_NAME_KEY] = name
self.sections.append(section)
def __str__(self):
'''Converts the example to Vowpal's input format.'''
section_strs = []
if self.value in (None, ''):
section_strs.append('%s %s' % (1.0, self.id))
else:
section_strs.append('%s %s %s' % (self.value, 1.0, self.id))
for s in self.sections:
tokens = [s[self.SECTION_NAME_KEY]]
for (key, value) in s.items():
if key == self.SECTION_NAME_KEY:
pass
elif value in (None, ''):
tokens.append(str(key))
else:
tokens.append('%s:%s' % (key, value))
section_strs.append(string.join(tokens))
return string.join(section_strs, '|')
class ExampleStream:
'''
Input examples streamed to Vowpal.
Examples with a value must appear before examples without.
'''
__slots__ = ('path', 'file', 'writing_train', 'n_test_examples', 'is_finalized')
def __init__(self, path):
self.path = path
self.file = open(self.path, 'w')
self.writing_train = True
self.n_test_examples = 0
self.is_finalized = False
def add_example(self, example):
'''Adds an example to the stream.'''
if self.writing_train and example.value == None:
self.writing_train = False
elif self.writing_train:
pass # things are okay
elif example.value != None:
raise AttributeError('Examples with value must appear before examples without.')
self.file.write(str(example))
self.file.write('\n')
if not self.writing_train:
self.n_test_examples += 1
def finalize(self):
'''Closes the stream. Called by Vowpal.'''
if not self.is_finalized:
self.file.close()
self.is_finalized = True
class Vowpal:
'''Wrapper for Vowpal Wabbit machine learning classifier'''
__slots__ = (
'path_vw', 'path_models', 'path_cache', 'path_preds', 'path_data',
'vowpal_args', 'n_test_examples'
)
def __init__(self, path_vw='vw', file_prefix='vw.%s', vowpal_args={}):
self.path_vw = path_vw
self.path_cache = file_prefix % 'cache'
self.path_preds = file_prefix % 'preds'
self.path_data = file_prefix % 'data'
self.path_log = file_prefix % 'log'
self.n_test_examples = -1
self.vowpal_args = vowpal_args
for p in [self.path_cache, self.path_preds, self.path_data, self.path_log]:
if os.path.isfile(p):
os.remove(p)
def predict_from_examples(self, training_examples, testing_examples):
'''
Train on a list of VowpalExample train objects.
Predict values for the VowpalExample test objects.
All VowpalExample objects must fit in memory.
'''
for i in xrange(len(training_examples)):
if training_examples[i].value == None:
raise AttributeError('training example %s has no value' % i)
for i in xrange(len(testing_examples)):
if testing_examples[i].value != None:
raise AttributeError( 'testing example %s has a value' % i)
f = open(self.path_data, 'a')
for example in training_examples:
f.write(str(example) + '\n')
for example in testing_examples:
f.write(str(example) + '\n')
f.close()
self.n_test_examples = len(testing_examples)
return self._predict()
def predict_from_example_stream(self, example_stream):
''' Predict using examples recorded by an ExampleStream. '''
example_stream.finalize()
self.n_test_examples = example_stream.n_test_examples
self.path_data = example_stream.path
return self._predict()
def predict_from_file(self, path_data):
''' Predict using examples recorded in a data file. '''
self.path_data = path_data
self.count_test_examples_in_input()
return self._predict()
def count_test_examples_in_input(self):
''' Count the number of test (unlabeled) examples in a file.'''
in_train = True
n_test = 0
for line in open(self.path_data):
i = line.find('|')
if i < 0:
raise Exception('no pipe found in input file.')
header_length = len(string.split(line[:i]))
if header_length == 3 and not in_train:
raise Exception('all train examples must appear before test examples.')
elif header_length == 3:
pass # do nothing
elif header_length == 2:
in_train = False
n_test += 1
else:
raise Exception('invalid header in %s: %s' % (`path_data`, `line[:i]`))
self.n_test_examples = n_test
def _predict(self):
''' Predict values for the test examples in the input file.'''
self.run_vowpal()
return self.read_preds()
def run_vowpal(self):
''' Execute the vowpal binary. '''
# these can be overriden using the vowpal_args constructor parameter
argd = {
'--conjugate_gradient' : None,
'--passes' : '100',
'--l2' : '.001',
'--cache_file' : self.path_cache,
'--predictions' : self.path_preds,
'--data' : self.path_data
}
for (name, val) in self.vowpal_args.items():
argd[name] = val
argl = [self.path_vw]
for (name, val) in argd.items():
argl.append(str(name))
if val != None:
argl.append(str(val))
log = open(self.path_log, 'w')
p = subprocess.Popen(argl, stderr=subprocess.STDOUT, stdout=log)
r = p.wait()
log.close()
if r != 0:
raise Exception, ('Vowpal error occurred: check log file `%s`' % self.path_log)
def read_preds(self):
''' Reads the Vowpal prediction results. '''
preds = collections.deque()
for line in open(self.path_preds):
(pred, id) = line.split()
preds.append([id, float(pred)])
if len(preds) > self.n_test_examples:
preds.popleft()
return list(preds)