-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathExtract_embeddings.py
109 lines (90 loc) · 3.61 KB
/
Extract_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""
Facial Recognition in Opencv using Deep Learning
File Name : Extract_embeddings.py
Description : This program is responsible for deep learning feature extractor to generate a 128-D vector describing a face
Author: Shiyaz T
Reference : https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/
"""
# import the necessary packages
from imutils import paths
import numpy as np
import imutils
import pickle
import cv2
import os
BASE_DIR = os.path.dirname(__file__)
print("[INFO] BASE DIR: ", BASE_DIR)
# load our serialized face detector from disk
print("[INFO] loading face detector...")
protoPath = os.path.join(BASE_DIR, "face_detection_model/deploy.prototxt")
modelPath = os.path.join(BASE_DIR, "face_detection_model/res10_300x300_ssd_iter_140000.caffemodel")
embedding_model = os.path.join(BASE_DIR, 'openface_nn4.small2.v1.t7')
dataset = os.path.join(BASE_DIR, 'dataset')
embeddings = os.path.join(BASE_DIR, 'output/embeddings.pickle')
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)
# load our serialized face embedding model from disk
print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(embedding_model)
# grab the paths to the input images in our dataset
print("[INFO] Load image dataset..")
imagePaths = list(paths.list_images(dataset))
print("[DEBUG] Image Paths: ", imagePaths)
# initialize our lists of extracted facial embeddings and
# corresponding people names
knownEmbeddings = []
knownNames = []
# initialize the total number of faces processed
total = 0
# loop over the image paths
for (i, imagePath) in enumerate(imagePaths):
# extract the person name from the image path
name = imagePath.split(os.path.sep)[-2]
image = cv2.imread(imagePath)
image = imutils.resize(image, width=600)
(h, w) = image.shape[:2]
# construct a blob from the image
imageBlob = cv2.dnn.blobFromImage(
cv2.resize(image, (300, 300)), 1.0, (300, 300),
(104.0, 177.0, 123.0), swapRB=False, crop=False)
# apply OpenCV's deep learning-based face detector to localize
# faces in the input image
detector.setInput(imageBlob)
detections = detector.forward()
# ensure at least one face was found
if len(detections) > 0:
# we're making the assumption that each image has only ONE
# face, so find the bounding box with the largest probability
i = np.argmax(detections[0, 0, :, 2])
confidence = detections[0, 0, i, 2]
print("[DEBUG] Confidence: ", confidence)
# ensure that the detection with the 50% probabilty thus helping filter out weak detections
if confidence > 0.5:
# compute the (x, y)-coordinates of the bounding box for
# the face
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# extract the face ROI and grab the ROI dimensions
face = image[startY:endY, startX:endX]
(fH, fW) = face.shape[:2]
# ensure the face width and height are sufficiently large
if fW < 20 or fH < 20:
continue
# construct a blob for the face ROI, then pass the blob
# through our face embedding model to obtain the 128-d
# quantification of the face
faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
(96, 96), (0, 0, 0), swapRB=True, crop=False)
embedder.setInput(faceBlob)
vec = embedder.forward()
# add the name of the person + corresponding face
# embedding to their respective lists
knownNames.append(name)
knownEmbeddings.append(vec.flatten())
total += 1
# dump the facial embeddings + names to disk
data = {"embeddings": knownEmbeddings, "names": knownNames}
print("[DEBUG] Total Faces:", total)
print("[DEBUG] Data: ", data['names'])
f = open(embeddings, 'wb')
f.write(pickle.dumps(data))
f.close()