-
Notifications
You must be signed in to change notification settings - Fork 0
/
smallestCircle.py
137 lines (115 loc) · 4.68 KB
/
smallestCircle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#
# Smallest enclosing circle - Library (Python)
#
# Copyright (c) 2017 Project Nayuki
# https://www.nayuki.io/page/smallest-enclosing-circle
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program (see COPYING.txt and COPYING.LESSER.txt).
# If not, see <http://www.gnu.org/licenses/>.
#
import math, random
# Data conventions: A point is a pair of floats (x, y). A circle is a triple of floats (center x, center y, radius).
# Returns the smallest circle that encloses all the given points. Runs in expected O(n) time, randomized.
# Input: A sequence of pairs of floats or ints, e.g. [(0,5), (3.1,-2.7)].
# Output: A triple of floats representing a circle.
# Note: If 0 points are given, None is returned. If 1 point is given, a circle of radius 0 is returned.
#
# Initially: No boundary points known
def make_circle(points):
# Convert to float and randomize order
shuffled = [(float(x), float(y)) for (x, y) in points]
random.shuffle(shuffled)
# Progressively add points to circle or recompute circle
c = None
for (i, p) in enumerate(shuffled):
if c is None or not is_in_circle(c, p):
c = _make_circle_one_point(shuffled[: i + 1], p)
return c
# One boundary point known
def _make_circle_one_point(points, p):
c = (p[0], p[1], 0.0)
for (i, q) in enumerate(points):
if not is_in_circle(c, q):
if c[2] == 0.0:
c = make_diameter(p, q)
else:
c = _make_circle_two_points(points[: i + 1], p, q)
return c
# Two boundary points known
def _make_circle_two_points(points, p, q):
circ = make_diameter(p, q)
left = None
right = None
px, py = p
qx, qy = q
# For each point not in the two-point circle
for r in points:
if is_in_circle(circ, r):
continue
# Form a circumcircle and classify it on left or right side
cross = _cross_product(px, py, qx, qy, r[0], r[1])
c = make_circumcircle(p, q, r)
if c is None:
continue
elif cross > 0.0 and (
left is None or _cross_product(px, py, qx, qy, c[0], c[1]) > _cross_product(px, py, qx, qy, left[0],
left[1])):
left = c
elif cross < 0.0 and (
right is None or _cross_product(px, py, qx, qy, c[0], c[1]) < _cross_product(px, py, qx, qy, right[0],
right[1])):
right = c
# Select which circle to return
if left is None and right is None:
return circ
elif left is None:
return right
elif right is None:
return left
else:
return left if (left[2] <= right[2]) else right
def make_circumcircle(p0, p1, p2):
# Mathematical algorithm from Wikipedia: Circumscribed circle
ax, ay = p0
bx, by = p1
cx, cy = p2
ox = (min(ax, bx, cx) + max(ax, bx, cx)) / 2.0
oy = (min(ay, by, cy) + max(ay, by, cy)) / 2.0
ax -= ox;
ay -= oy
bx -= ox;
by -= oy
cx -= ox;
cy -= oy
d = (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by)) * 2.0
if d == 0.0:
return None
x = ox + ((ax * ax + ay * ay) * (by - cy) + (bx * bx + by * by) * (cy - ay) + (cx * cx + cy * cy) * (ay - by)) / d
y = oy + ((ax * ax + ay * ay) * (cx - bx) + (bx * bx + by * by) * (ax - cx) + (cx * cx + cy * cy) * (bx - ax)) / d
ra = math.hypot(x - p0[0], y - p0[1])
rb = math.hypot(x - p1[0], y - p1[1])
rc = math.hypot(x - p2[0], y - p2[1])
return (x, y, max(ra, rb, rc))
def make_diameter(p0, p1):
cx = (p0[0] + p1[0]) / 2.0
cy = (p0[1] + p1[1]) / 2.0
r0 = math.hypot(cx - p0[0], cy - p0[1])
r1 = math.hypot(cx - p1[0], cy - p1[1])
return (cx, cy, max(r0, r1))
_MULTIPLICATIVE_EPSILON = 1 + 1e-14
def is_in_circle(c, p):
return c is not None and math.hypot(p[0] - c[0], p[1] - c[1]) <= c[2] * _MULTIPLICATIVE_EPSILON
# Returns twice the signed area of the triangle defined by (x0, y0), (x1, y1), (x2, y2).
def _cross_product(x0, y0, x1, y1, x2, y2):
return (x1 - x0) * (y2 - y0) - (y1 - y0) * (x2 - x0)