-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwavegan2.py
335 lines (273 loc) · 9.53 KB
/
wavegan2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# -*- coding: utf-8 -*-
"""
-----------------------------------------------------------------------------
Copyright (c) 2019 Christopher Donahue
Please see LICENSE-wavegan.txt.
-----------------------------------------------------------------------------
change 2021-9-15
1チャンネルのもとの信号に、更に、1チャンネルのラベル(WAVそのもの、代表)を追加して、
Conditional wave GAN を実験するためのもの。
"""
"""
ネットワークは、画像で実績のあるDCGANを真似た作りになっている。
"""
import tensorflow as tf
def conv1d_transpose(
inputs,
filters,
kernel_width,
stride=4,
padding='same',
upsample='zeros'):
"""
低次元のベクトルからより長い次元のベクトルを作る アップサンプルする方法を提示している
DCGAN uses small (5x5), twodimensional filters while WaveGAN uses longer (length-25), one-dimensional filters
and a larger upsampling factor. Both strategies have the same number of parameters and numerical operations
we use longer one-dimensional filters of length 25 (wavegan_kernel_len=25),instead of two-dimensional
オーディオを信号は波長が長いので 画像と比べて長いスパンのフィルターが必要
filters of size 5x5, and we upsample by a factor of 4 instead of 2 at each layer (Figure 2). We
"""
if upsample == 'zeros':
return tf.layers.conv2d_transpose(
tf.expand_dims(inputs, axis=1),
filters,
(1, kernel_width),
strides=(1, stride),
padding='same'
)[:, 0]
elif upsample == 'nn':
batch_size = tf.shape(inputs)[0]
_, w, nch = inputs.get_shape().as_list()
x = inputs
x = tf.expand_dims(x, axis=1)
x = tf.image.resize_nearest_neighbor(x, [1, w * stride])
x = x[:, 0]
return tf.layers.conv1d(
x,
filters,
kernel_width,
1,
padding='same')
else:
raise NotImplementedError
"""
Input: [None, 100]
Output: [None, slice_len, 1]
"""
def WaveGANGenerator(
z,
slice_len=16384,
nch=1,
kernel_len=25,
dim=64,
use_batchnorm=False,
upsample='zeros',
labels=False, # add
train=False):
assert slice_len in [16384, 32768, 65536]
batch_size = tf.shape(z)[0]
if use_batchnorm:
batchnorm = lambda x: tf.layers.batch_normalization(x, training=train)
else:
batchnorm = lambda x: x
# FC and reshape for convolution
# [100] -> [16, 1024]
dim_mul = 16 if slice_len == 16384 else 32
output = z
with tf.variable_scope('z_project'):
output = tf.layers.dense(output, 4 * 4 * dim * dim_mul)
output = tf.reshape(output, [batch_size, 16, dim * dim_mul])
output = batchnorm(output)
output = tf.nn.relu(output)
dim_mul //= 2
# Layer 0
# [16, 1024] -> [64, 512]
with tf.variable_scope('upconv_0'):
output = conv1d_transpose(output, dim * dim_mul, kernel_len, 4, upsample=upsample)
output = batchnorm(output)
output = tf.nn.relu(output)
dim_mul //= 2
# Layer 1
# [64, 512] -> [256, 256]
with tf.variable_scope('upconv_1'):
output = conv1d_transpose(output, dim * dim_mul, kernel_len, 4, upsample=upsample)
output = batchnorm(output)
output = tf.nn.relu(output)
dim_mul //= 2
# Layer 2
# [256, 256] -> [1024, 128]
with tf.variable_scope('upconv_2'):
output = conv1d_transpose(output, dim * dim_mul, kernel_len, 4, upsample=upsample)
output = batchnorm(output)
output = tf.nn.relu(output)
dim_mul //= 2
# Layer 3
# [1024, 128] -> [4096, 64]
with tf.variable_scope('upconv_3'):
output = conv1d_transpose(output, dim * dim_mul, kernel_len, 4, upsample=upsample)
output = batchnorm(output)
output = tf.nn.relu(output)
"""
オーディオの波形を処理する1単位slice_lenが16384, つまり16KHzサンプリングで長さ約1秒
"""
# add
if nch == 2 and labels:
nch0=1
else:
nch0=nch
# end of add
# chg from nch to nch0, below
if slice_len == 16384:
# Layer 4
# [4096, 64] -> [16384, nch0]
with tf.variable_scope('upconv_4'):
output = conv1d_transpose(output, nch0, kernel_len, 4, upsample=upsample)
output = tf.nn.tanh(output)
elif slice_len == 32768:
# Layer 4
# [4096, 128] -> [16384, 64]
with tf.variable_scope('upconv_4'):
output = conv1d_transpose(output, dim, kernel_len, 4, upsample=upsample)
output = batchnorm(output)
output = tf.nn.relu(output)
# Layer 5
# [16384, 64] -> [32768, nch0]
with tf.variable_scope('upconv_5'):
output = conv1d_transpose(output, nch0, kernel_len, 2, upsample=upsample)
output = tf.nn.tanh(output)
elif slice_len == 65536:
# Layer 4
# [4096, 128] -> [16384, 64]
with tf.variable_scope('upconv_4'):
output = conv1d_transpose(output, dim, kernel_len, 4, upsample=upsample)
output = batchnorm(output)
output = tf.nn.relu(output)
# Layer 5
# [16384, 64] -> [65536, nch0]
with tf.variable_scope('upconv_5'):
output = conv1d_transpose(output, nch0, kernel_len, 4, upsample=upsample)
output = tf.nn.tanh(output)
# Automatically update batchnorm moving averages every time G is used during training
if train and use_batchnorm:
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope=tf.get_variable_scope().name)
if slice_len == 16384:
assert len(update_ops) == 10
else:
assert len(update_ops) == 12
with tf.control_dependencies(update_ops):
output = tf.identity(output)
return output
def lrelu(inputs, alpha=0.2):
return tf.maximum(alpha * inputs, inputs)
"""
オーディオ特融の繰り返しパターンが存在するときに最適化問題解決のため、
discriminatorだけ、列に位置を移動する(パターン性を少し無くす効果があるのか?)
Generative image models that upsample by transposed
convolution (such as DCGAN) are known to produce
characteristic “checkerboard” artifacts in images (Odena
et al., 2016). Periodic patterns are less common in images
(Section 3.1), and thus the discriminator can learn to
reject images that contain them.
To prevent the discriminator from learning such a solution,
we propose the phase shuffle operation with hyperparameter
n.
"""
def apply_phaseshuffle(x, rad, pad_type='reflect'):
b, x_len, nch = x.get_shape().as_list()
phase = tf.random_uniform([], minval=-rad, maxval=rad + 1, dtype=tf.int32)
pad_l = tf.maximum(phase, 0)
pad_r = tf.maximum(-phase, 0)
phase_start = pad_r
x = tf.pad(x, [[0, 0], [pad_l, pad_r], [0, 0]], mode=pad_type)
x = x[:, phase_start:phase_start+x_len]
x.set_shape([b, x_len, nch])
return x
"""
Input: [None, slice_len, nch]
Output: [None] (linear output)
"""
def WaveGANDiscriminator(
x,
kernel_len=25,
dim=64,
use_batchnorm=False,
phaseshuffle_rad=0):
batch_size = tf.shape(x)[0]
slice_len = int(x.get_shape()[1])
"""
We modify the discriminator in a similar way, using length-25 filters in one dimension
and increasing stride from 2 to 4.
"""
"""
wavegan_batchnorm=False, BATCH NORMALIZEはオフ
"""
if use_batchnorm:
batchnorm = lambda x: tf.layers.batch_normalization(x, training=True)
else:
batchnorm = lambda x: x
"""
wavegan_disc_phaseshuffle=2 discriminatorで繰り返しパターンを避けるため、列の移動する。
"""
if phaseshuffle_rad > 0:
phaseshuffle = lambda x: apply_phaseshuffle(x, phaseshuffle_rad)
else:
phaseshuffle = lambda x: x
# Layer 0
# [16384, 1] -> [4096, 64]
output = x
with tf.variable_scope('downconv_0'):
output = tf.layers.conv1d(output, dim, kernel_len, 4, padding='SAME')
output = lrelu(output)
output = phaseshuffle(output)
# Layer 1
# [4096, 64] -> [1024, 128]
with tf.variable_scope('downconv_1'):
output = tf.layers.conv1d(output, dim * 2, kernel_len, 4, padding='SAME')
output = batchnorm(output)
output = lrelu(output)
output = phaseshuffle(output)
# Layer 2
# [1024, 128] -> [256, 256]
with tf.variable_scope('downconv_2'):
output = tf.layers.conv1d(output, dim * 4, kernel_len, 4, padding='SAME')
output = batchnorm(output)
output = lrelu(output)
output = phaseshuffle(output)
# Layer 3
# [256, 256] -> [64, 512]
with tf.variable_scope('downconv_3'):
output = tf.layers.conv1d(output, dim * 8, kernel_len, 4, padding='SAME')
output = batchnorm(output)
output = lrelu(output)
output = phaseshuffle(output)
# Layer 4
# [64, 512] -> [16, 1024]
with tf.variable_scope('downconv_4'):
output = tf.layers.conv1d(output, dim * 16, kernel_len, 4, padding='SAME')
output = batchnorm(output)
output = lrelu(output)
if slice_len == 32768:
# Layer 5
# [32, 1024] -> [16, 2048]
with tf.variable_scope('downconv_5'):
output = tf.layers.conv1d(output, dim * 32, kernel_len, 2, padding='SAME')
output = batchnorm(output)
output = lrelu(output)
elif slice_len == 65536:
# Layer 5
# [64, 1024] -> [16, 2048]
with tf.variable_scope('downconv_5'):
output = tf.layers.conv1d(output, dim * 32, kernel_len, 4, padding='SAME')
output = batchnorm(output)
output = lrelu(output)
"""
最後のconv層が [16, 2048]になるように調整して、
Flatten して、desnseで判定かな。
"""
# Flatten
output = tf.reshape(output, [batch_size, -1])
# Connect to single logit
with tf.variable_scope('output'):
output = tf.layers.dense(output, 1)[:, 0]
# Don't need to aggregate batchnorm update ops like we do for the generator because we only use the discriminator for training
return output