-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
169 lines (154 loc) · 7.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import mxnet as mx
import numpy as np
import logging
import librosa
import os
import fnmatch
import multiprocessing
import random
import argparse
from scipy.ndimage.interpolation import shift
def causal_layer(data=None, name="causal"):
assert isinstance(data, mx.symbol.Symbol)
zero = mx.symbol.Variable(name=name+"-zero")
concat = mx.symbol.Concat(*[data, zero], dim=3, name=name+"-concat")
causal = mx.symbol.Convolution(data=concat, kernel=(1, 2), stride=(1, 1), num_filter=32, name=name)
return causal
def residual_block(data=None, kernel=(1, 2), dilate=None, num_filter=32, name=None, stride=(1, 1), output_channel=None):
assert name is not None
assert dilate is not None
assert output_channel is not None
assert isinstance(data, mx.symbol.Symbol)
zero = mx.symbol.Variable(name=name+"-zero")
concat = mx.symbol.Concat(*[data, zero], dim=3, name=name+"-concat")
conv_filter = mx.symbol.Convolution(data=concat, kernel=kernel, stride=stride, dilate=dilate, num_filter=num_filter, name=name+"conv-filter")
conv_gate = mx.symbol.Convolution(data=concat, kernel=kernel, stride=stride, dilate=dilate, num_filter=num_filter, name=name+"conv-gate")
output_filter = mx.symbol.Activation(data=conv_filter, act_type="tanh", name=name+"act_filter")
output_gate = mx.symbol.Activation(data=conv_gate, act_type="sigmoid", name=name+"act_gate")
output = output_filter * output_gate
out_dense = mx.symbol.Convolution(data=output, kernel=(1, 1), num_filter=output_channel, name=name+"out_dense")
# out_skip = mx.symbol.Convolution(data=output, kernel=(1, 1), num_filter=output_channel, name=name+"out_skip")
return out_dense+data, out_dense
class DataBatch(mx.io.DataBatch):
def __init__(self, data, label):
self.data = data
self.label = label
class DataIter(mx.io.DataIter):
def __init__(self, batch_size, length, names, shape):
self.provide_data = [(k, v) for k, v in shape.iteritems()]
self.provide_label = [("softmax_label", (batch_size, length))]
self.cur_batch = 0
self.num_batch = len(names)/batch_size
self.batch_size = batch_size
self.length = length
self.names = names
self.q = multiprocessing.Queue(maxsize=4)
self.pws = [multiprocessing.Process(target=self.get_batch) for i in xrange(4)]
for pw in self.pws:
pw.daemon = True
pw.start()
def reset(self):
self.cur_batch = 0
def __iter__(self):
return self
def __next__(self):
return self.next()
def get_batch(self):
while True:
data_all = np.empty(shape=(self.batch_size, 1, 1, self.length))
label_all = np.empty(shape=(self.batch_size, self.length))
mx_data = []
mx_label = []
idx = 0
while idx < self.batch_size:
name = random.choice(self.names)
audio, _ = librosa.load(name, sr=16000, mono=True)
if audio.shape[0] < self.length:
continue
audio = audio[:self.length]
magnitude = 1.0*np.log(1+255*np.abs(audio))/np.log(1.0+255)
signal = np.sign(audio) * magnitude
audio = ((signal+1)/2.0*255+0.5).astype(np.int16)
label = shift(audio, -1, cval=0)
audio = audio.reshape(1, 1, self.length)
data_all[idx, :, :, :] = audio
label_all[idx, :] = label
idx += 1
for k, v in shape.iteritems():
if "input" in k:
data = mx.nd.array(np.array(data_all))
else:
data = mx.nd.array(np.zeros(shape=v))
mx_data.append(data)
label = mx.nd.array(np.array(label_all))
mx_label.append(label)
self.q.put(obj=DataBatch(mx_data, mx_label), block=True, timeout=None)
def next(self):
if self.q.empty():
logging.debug("waiting for data......")
if self.cur_batch < self.num_batch:
self.cur_batch += 1
return self.q.get(block=True, timeout=None)
else:
raise StopIteration
class MYMAE(mx.metric.EvalMetric):
"""Calculate Mean Absolute Error loss"""
def __init__(self):
super(MYMAE, self).__init__('mymae')
def update(self, labels, preds):
for label, pred in zip(labels, preds):
label = label.asnumpy()
pred = pred.asnumpy()
if len(label.shape) == 1:
label = label.reshape(label.shape[0], 1)
self.sum_metric += np.abs(label - np.argmax(pred, axis=1).reshape(label.shape)).mean()
self.num_inst += 1 # numpy.prod(label.shape)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="lalala")
parser.add_argument('--gpus', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=1)
args=parser.parse_args()
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.INFO, format=head)
dilate = [2**i for i in range(1, 10)]
shape = {}
params = {'length': 2**15, 'batch_size': args.batch_size}
batch_size = params['batch_size']
length = params['length']
data = mx.symbol.Variable(name="input")
net = causal_layer(data=data, name="causal")
shape = {
"input": (batch_size, 1, 1, length),
"causal-zero": (batch_size, 1, 1, 1)
}
residual = []
outs = []
for d in dilate:
name = "residual-"+str(d)
output_channel = 32
net, out = residual_block(data=net, kernel=(1, 2), dilate=(1, d), num_filter=32, stride=(1, 1), output_channel=output_channel, name=name)
residual.append(net)
outs.append(out)
shape[name+"-zero"] = (batch_size, output_channel, 1, d)
net = outs[0]
for out in outs[1:]:
net += out
net = mx.symbol.Activation(data=net, act_type="relu", name="sum-activation")
net = mx.symbol.Convolution(data=net, kernel=(1, 1), num_filter=128, name="post-conv1")
net = mx.symbol.Activation(data=net, act_type="relu", name="post-activation1")
net = mx.symbol.Convolution(data=net, kernel=(1, 1), num_filter=256, name="post-conv2")
net = mx.symbol.SoftmaxOutput(data=net, name="softmax", multi_output=True)
mx.viz.plot_network(symbol=net, shape=shape, node_attrs={"fixedsize": "false"}).render(filename="tts", cleanup=True, view=True)
target = "./VCTK-Corpus/wav48/"
names = []
for root, dirnames, filenames in os.walk(target):
for filename in fnmatch.filter(filenames, "*.wav"):
names.append(os.path.join(root, filename))
# names = names[:100]
data = DataIter(batch_size=params['batch_size'], length=params['length'], names=names, shape=shape)
opt = mx.optimizer.SGD(momentum=0.9, learning_rate=1e-3)
init = mx.init.Xavier(rnd_type="gaussian", factor_type="in", magnitude=2)
model = mx.model.FeedForward(symbol=net, ctx=mx.gpu(args.gpus), num_epoch=100, optimizer=opt, initializer=init)
mon = mx.monitor.Monitor(interval=1, stat_func=None, pattern=".*softmax_output", sort=False)
mon = None
model.fit(X=data, eval_metric=MYMAE(), monitor=mon, batch_end_callback=mx.callback.Speedometer(batch_size, 10),epoch_end_callback=mx.callback.do_checkpoint("models/tts"))