forked from iterative/example_cml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
30 lines (24 loc) · 841 Bytes
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
import json
import os
import numpy as np
# Read in data
X_train = np.genfromtxt("data/train_features.csv")
y_train = np.genfromtxt("data/train_labels.csv")
X_test = np.genfromtxt("data/test_features.csv")
y_test = np.genfromtxt("data/test_labels.csv")
# Fit a model
depth = 5
clf = RandomForestClassifier(max_depth=depth)
# clf = GradientBoostingClassifier(max_depth=depth)
clf.fit(X_train, y_train)
acc = clf.score(X_test, y_test)
print(acc)
with open("metrics.txt", 'w') as outfile:
outfile.write("Accuracy: " + str(acc) + "\n")
# Plot it
disp = plot_confusion_matrix(
clf, X_test, y_test, normalize='true', cmap=plt.cm.Blues)
plt.savefig('confusion_matrix.png')