-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_datasets.py
69 lines (48 loc) · 1.74 KB
/
face_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
####################################################
# Simranjeet Singh
# @itsexceptional
####################################################
# Import OpenCV2 for image processing
import cv2
import os
def assure_path_exists(path):
dir = os.path.dirname(path)
if not os.path.exists(dir):
os.makedirs(dir)
# Start capturing video
vid_cam = cv2.VideoCapture(0)
# Detect object in video stream using Haarcascade Frontal Face
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# For each person, one face id
face_id = int(input("Enter ID:"))
# Initialize sample face image
count = 0
assure_path_exists("dataset/")
# Start looping
while (True):
# Capture video frame
_, image_frame = vid_cam.read()
# Convert frame to grayscale
gray = cv2.cvtColor(image_frame, cv2.COLOR_BGR2GRAY)
# Detect frames of different sizes, list of faces rectangles
faces = face_detector.detectMultiScale(gray, 1.3, 5)
# Loops for each faces
for (x, y, w, h) in faces:
# Crop the image frame into rectangle
cv2.rectangle(image_frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
# Increment sample face image
count += 1
# Save the captured image into the datasets folder
cv2.imwrite("dataset/User." + str(face_id) + '.' + str(count) + ".jpg", gray[y:y + h, x:x + w])
# Display the video frame, with bounded rectangle on the person's face
cv2.imshow('frame', image_frame)
# To stop taking video, press 'q' for at least 100ms
if cv2.waitKey(100) & 0xFF == ord('q'):
break
# If image taken reach 100, stop taking video
elif count > 50:
break
# Stop video
vid_cam.release()
# Close all started windows
cv2.destroyAllWindows()