-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_recognition.py
87 lines (61 loc) · 2.24 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
####################################################
# Simranjeet Singh
# @itsexceptional
#
####################################################
# Import OpenCV2 for image processing
import cv2
# Import numpy for matrices calculations
import numpy as np
import os
def assure_path_exists(path):
dir = os.path.dirname(path)
if not os.path.exists(dir):
os.makedirs(dir)
# Create Local Binary Patterns Histograms for face recognization
recognizer = cv2.face.LBPHFaceRecognizer_create()
assure_path_exists("trainer/")
# Load the trained mode
recognizer.read('trainer/trainer.yml')
# Load prebuilt model for Frontal Face
cascadePath = "haarcascade_frontalface_default.xml"
# Create classifier from prebuilt model
faceCascade = cv2.CascadeClassifier(cascadePath);
# Set the font style
font = cv2.FONT_HERSHEY_SIMPLEX
# Initialize and start the video frame capture
cam = cv2.VideoCapture(0)
# Loop
while True:
# Read the video frame
ret, im =cam.read()
# Convert the captured frame into grayscale
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
# Get all face from the video frame
faces = faceCascade.detectMultiScale(gray, 1.2,5)
# For each face in faces
for(x,y,w,h) in faces:
# Create rectangle around the face
cv2.rectangle(im, (x-20,y-20), (x+w+20,y+h+20), (0,255,0), 4)
# Recognize the face belongs to which ID
Id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
if (Id == 1):
Id = "Manpreet{0:.2f}%".format(round(100 - confidence, 2))
elif(Id == 2):
Id = "Simran {0:.2f}%".format(round(100 - confidence, 2))
elif (Id == 3):
Id = "Manpreetttttt {0:.2f}%".format(round(100 - confidence, 2))
elif (Id == 4):
Id = "Manpreetttttt {0:.2f}%".format(round(100 - confidence, 2))
# Put text describe who is in the picture
cv2.rectangle(im, (x-22,y-90), (x+w+22, y-22), (0,255,0), -1)
cv2.putText(im, str(Id), (x,y-40), font, 1, (255,255,255), 3)
# Display the video frame with the bounded rectangle
cv2.imshow('im',im)
# If 'q' is pressed, close program
if cv2.waitKey(10) & 0xFF == ord('q'):
break
# Stop the camera
cam.release()
# Close all windows
cv2.destroyAllWindows()